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Abstract. We consider the possibility to extract spins that are generated by
an electric current in a two-dimensional electron gas with Rashba–Dresselhaus
spin–orbit interaction (R2DEG) in the Hall geometry. To this end, we discuss
boundary conditions for the spin accumulations between a spin–orbit (SO)
coupled region and a contact without SO coupling, i.e. a normal two-dimensional
electron gas (2DEG). We demonstrate that in contrast to contacts that extend
along the whole sample, a spin accumulation can diffuse into the normal region
through finite contacts and be detected by e.g. ferromagnets. For an impedance-
matched narrow contact the spin accumulation in the 2DEG is equal to the
current induced spin accumulation in the bulk of R2DEG up to a geometry-
dependent numerical factor.
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1. Introduction

In recent years, there has been an increasing impetus towards generating and detecting spin
accumulations and spin currents in nonmagnetic systems [1]. Recently, as an alternative to
spin injection with ferromagnets, spin generation based on two related effects, current-induced
spin accumulation (CISA) [2]–[5] and current-induced transverse spin current [6, 7]4 (known
as the spin Hall effect (SHE)), has attracted considerable attention. In [6], the SHE was caused
by the spin–orbit (SO) interaction of impurities and the effect is then called ‘extrinsic’. The ‘in-
trinsic’ SHE caused by a band structure with SO-induced spin splitting was proposed by Sinova
et al [9] for the two-dimensional electron gas with finite Rashba type SO coupling (R2DEG)
and Murakamiet al [10] for the hole gas in bulk III–V semiconductors with significant SO
interaction. After an initial controversy, it is now generally agreed that in the diffuse regime
the intrinsic spin Hall conductivity vanishes in the bulk of a R2DEG [11]–[14], but remains
finite in hole systems, and near the edges of a finite diffusive R2DEG [12, 15]. CISA and the
SHE have been observed in semiconductors by optical detection of local spin accumulations
[5, 16, 17]. The SHE has also been observed in metals using ferromagnetic leads [18].
Although initial theoretical work on the SHE and CISA have been on bulk disordered conductors
[7]–[13], [15, 19, 20], it is now understood that the bulk conductivity is not necessarily related
to experimentally relevant quantities such as local spin accumulations probed by local optical
or electrical probes. In this respect, a more local approach based on spin diffusion equations is
advantageous [12, 13]. However, spin diffusion equations have to be supplemented by suitable
boundary conditions that have observable consequences. There have been many proposals in
that direction [15], [21]–[26]5, but a consensus has not been reached so far.

Here, we focus on the boundary conditions between a (half infinite) two-dimensional
electron gas with SO coupling (R2DEG) and a (half infinite) two-dimensional electron gas
(2DEG) without SO coupling connected by a contact that is narrow on the scale of the system,
but wider than the mean free path. Such a boundary has been considered [23, 26], but for an

4 See also [8].
5 See also [27].
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infinitely wide contact region, for which it could be shown that no spin accumulation could
diffuse into the 2DEG [26]. We shall show below, however, that for a narrow (as opposed
to wide) contact, the spin accumulation in the 2DEG is equal to the bulk value of the spin
accumulation in R2DEG up to a numerical constant which depends on the geometry that is
smaller than but can be of the order of unity. These results prove that CISAcanbe extracted to
a region with small SO coupling in which the spin lifetime is very long and used for spintronics
applications, thus confirming our previous results [15].

This paper is organized as follows: we define our model and derive spin diffusion equations
in section2. In section3, we first recapitulate the symmetry relations for conductances with
respect to measuring the spin accumulation in a normal region with ferromagnetic leads. Next,
we apply these relations to demonstrate that CISA from the R2DEG can be extracted into a
2DEG region. In section4, we focus on a model for a small contact between the R2DEG and
the 2DEG and solve it to demonstrate the principle of spin extraction to a region with vanishing
SO interaction. The numerical simulations for the diffuse R2DEG–2DEG heterostructure are
reported in section5.

2. Spin diffusion equations in a 2DEG with Rashba spin–orbit coupling

In this paper, we focus on a disordered finite size 2DEG with Rashba type SO coupling, noting
that the effects of a significant Dresselhaus term can be included straightforwardly. Throughout
the paper, we shall assume that all length scales of this finite region are much larger than the
elastic mean free path such that spin transport is governed by diffusion equations [12, 13]. In
this section, we proceed to derive these spin diffusion equations for later convenience.

In 2× 2 spin space, our system is defined by the Hamiltonian:

H =
p2

2m
+αp · (σ× z) +U (x) + V(x), (1)

wherex andp are the (two-dimensional (2D)) position and momentum operators, respectively,
σ is the vector of Pauli spin matrices (the 2× 2 unit matrix is implied with scalars),z is the
unit vector normal to the 2D plane,α parameterizes the strength of the SO interaction that can
be position dependent, e.g. due to local external gates,V(x) =

∑N
i =1 φ(x −Xi ) is the impurity

potential, modeled byN impurity centers located at points{X i }, which for the sake of simplicity
we assume to be spherically symmetric, andU (x) is a smooth potential that confines the system
to a finite region but allows a few openings to reservoirs.

2.1. Rashba Green function

Our starting point is the impurity averaged Green’s functionG(k) = (h̄2k2/2m+ h̄αη · k − E −

ih̄/τ)−1, whereη = z×σ, andτ is the momentum lifetime. In terms of its components,G(k)

is given by

h̄2

2m
G(k) =

1

2

(
1

k2 − k2
+

+
1

k2 − k2
−

)
+

kαk ·η− k2
α/2

k2
+ − k2

−

(
1

k2 − k2
+

−
1

k2 − k2
−

)
, (2)
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wherek2
±

= k2
F + k2

α/2± kα

√
k2

F + k2
α/4 + 2mi/(τ h̄), kα = 2mα/h̄ andkF =

√
2mEF/h̄2. The real

space Green function is then obtained by a Fourier transform:

G(x, EF) =
im

2h̄2

[
−

1

2
(H (1)

0 (k+x) + H (1)

0 (k−x)) −
k2

α/2

k2
+ − k2

−

(H (1)

0 (k+x) − H (1)

0 (k−x))

+
iη · x̂kα

k2
+ − k2

−

(k+H (1)

1 (k+x) − k−H (1)

1 (k−x))

]
, (3)

wherex = |x| andH (1)
n is the Hankel function of the first kind. We note that we only need the

largekFx asymptotics ofG(x), because we are interested in dilute disorder. The conventional
approximation [28] is to expandG(x) to leading order in 1/(kFr ) andkα/kF:

G(x, EF) ≈ −
im

2h̄2

√
2

kFx
eikFx−iπ/4−x/2l e−ikαx ·η/2, (4)

where l = h̄kFτ/m. This level of approximation is sufficient for most SO related
applications such as the calculation of Dyakonov–Perel spin relaxation, spin precession, weak
antilocalization etc. However, in order to study CISA and SHE in diffusive systems, it is
necessary to go to higher order inmα/h̄kF and 1/(kFx). With these correction terms, the
asymptotic Green function becomes:

G(x, EF) ≈
−im

2h̄2

√
2

kFx
eikFx−iπ/4−x/2l

[
e−ikαx·η/2

(
1−

kα

4kF
x̂ · η

)
−

3i

8kFx
eikαx ·η/2 +

i

8kFx

(
eikαx/2 + e−ikαx/2

) ]
, (5)

where x̂ = x/x . In the next subsection, we will use this expression to derive spin diffusion
equations for a R2DEG.

2.2. Diffusion equation

We first focus on the equation of motion of the density matrix with coherent spin components.
It can be shown that in the limitEFτ/h̄ � 1, the energy resolved density matrix satisfies the
following equation [12, 13, 23, 24]:

ρa(x, ω) =
1

2πντ

∫
d2x′Kac(x, x′

; ω)ρc(x′, ω), (6)

whereρa = Tr(ρσa), summation over repeated indices is implied, andν is the density of states
and

Kab(x, x′
; ω) =

1
2Tr
(
σaGR(x, x′

; E +ω)σbGA(x′, x; E)
)
. (7)

Multiplying ρ(E) with the density of states and integrating over energy, we obtain the densities
and polarizations, whereas accumulations are obtained by directly integrating over energy. The
diffusion equation is obtained by expanding equation (7) to second order in spatial gradients. In
a homogeneously disordered system we have:

ρa(x) =
1

2πντ

∫
d2rKac(r)ρc(r + x),

≈
1

2πντ

∫
d2rKac(r)(ρc(x) + r · ∇ρc(x) + r i r j ∂i ∂ j ρc(x), (8)
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whereρa(x) = ρa(x; 0). We now use the asymptotic expression equation (5) for the Green’s
function and insert the resulting expression into equation (8). The spatial integrals are
elementary and lead to the following equations for the vector components of the density matrix,
s= (ρ1/2, ρ2/2), s3 = ρ3/2 andn = ρ0:

D∇
2n − 4Ks−c(∇ × s)z = 0, (9)

D∇
2s3 − 2Kp(∇ · s) =

2s3

τs
, (10)

D∇
2s+ 2Kp∇s3 − Ks−c(z× ∇)n =

s
τs

, (11)

here D = v2
Fτ/2, τs = τ(1 + 4ξ2)/2ξ2 (the Dyakonov–Perel spin relaxation time),Ks−c =

αξ2/(1 + 4ξ2), Kp = h̄kFξ/m(1 + 4ξ2)2 and ξ = αpFτ/h̄. A similar expansion for the spin
current, this time to first order in the spatial gradients, produces the analog of Fick’s law for
spin diffusion:

j i
j =

νvFξ

1 + 4ξ2

(
δi 3

(
sj − ε jm3

ατ

2
∇mn

)
− δi j s3

)
− νD∇ j si . (12)

When supplied with suitable boundary conditions the diffusion equations
(9)–(11) and the spin current expression (12) can be solved to obtain all spin and charge
conductances. Here, we are mainly interested in the boundary between a R2DEG and a 2DEG
(for hard wall boundary conditions see [21, 23, 24]). In this case, the boundary conditions
require the continuity of the spin current [15, 26]
νvFξ

1 + 4ξ2

(
δi 3

(
n · sR

−
ατ

2
z · (n × ∇)n

)
− ni s

R
3

) ∣∣∣
0
− νDn · ∇sR

i .

∣∣∣
0
= νDn · ∇sN

i

∣∣∣
0
, (13)

wheresR andsN are the spin accumulations in the R2DEG and the 2DEG, respectively, and
n is the unit normal vector at the interface. A common choice for the matching condition for
the spin accumulation at the interface is to assume that the spin accumulations are continuous
(see e.g. [1]):

sR
∣∣∣
0
= sN

∣∣∣
0
. (14)

This condition has been criticized recently in [26] in which it was demonstrated that for an
infinite interface with a constant electric field parallel to it:(

sR +
ατ

2
n
(
n · (z× ∇n)

)) ∣∣∣
0
= sN

∣∣∣
0
. (15)

We first note that when the charge current is perpendicular to the interface, such as for a two-
probe configuration6, these two boundary conditions agree and no controversy exists. However,
for an infinite interface where the charge current density is homogeneous, the difference between
these two boundary conditions is drastic: if equation (14) is valid, a CISA diffuses into the
2DEG. On the other hand, if equation (15) is valid, the spin accumulation vanishes in the 2DEG.
We solve this conundrum below by showing that for a contact smaller than the spin relaxation
length (as assumed in [15]), the two boundary conditions lead to results that agree up to a
numerical factor of the order of unity. We therefore conclude that itis possible to extract spin
accumulation to the 2DEG and detect it with a ferromagnet.

6 Note however that in the two-probe set-up, current induced spin accumulation in R2DEG does not generate an
electrical signal up to orderα2/v2

F [29].
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Figure 1. Set-up for detection of current induced spins.

3. Onsager’s relations and the spin boundary conditions

In this section, we provide a general symmetry argument based on Onsager’s relations, that
proves viability of electric detection of the SHE and the CISA by finite size contacts. Let
us start by addressing the symmetry properties of multiprobe conductances relevant for the
combination of a SO coupled region with a ferromagnet via a normal region (figure1), using
Onsager’s relations [29]–[33]. We are particularly interested in the set-up shown in figure1. The
configuration in figure1(a) is designed to measure the spin accumulation in the 2DEG injected
from the neighbouring R2DEG. The voltage signalV directly observes boundary conditions
between R2DEG and 2DEG when the charge current isparallel to the boundary. The set-up in
figure 1(b), on the other hand, measures how much spin is injected into the R2DEG from the
ferromagnet through the 2DEG. ThenV measures directly the spin boundary conditions for a
charge currentperpendicularto the boundary. Onsager relations relate these two conductances,
enabling us to relate the boundary conditions when the current is parallel or perpendicular to
the boundary.

3.1. Onsager’s relations

In this subsection, we focus on the specific four-probe set-up in figure2 (for a more general
discussion of Onsager’s relations in the present context we refer to [29]). The currents in the
leads and the respective chemical potentials of the reservoirs are related in linear response as
I i =

∑
j Gi j µ j . We now use the Landauer–Büttiker formalism to obtainGi j . The scattering

matrix for the SO coupled region and the ferromagnetic region is given respectively bySSO and
Sm. The symmetry properties of these matrices are self-duality (reflecting the presence of SO
coupling)SSO = 62ST

SO62, andSm = 62ST
−m62, where62 is block diagonal in the Pauli matrix

σy [34]. We are interested in the block structure ofSSO singling out lead 5 combining the SO
and F regions:

SSO =

(
rSO t ′

SO
tSO r ′

SO

)
, (16)
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Figure 2. A generic four-probe set-up for the detection of current-induced spins.

where the matrixrSO includes all reflections and transmissions that begin and end in the leads 1,
2 and 4. Using the rules for combiningS-matrices, we obtain the jointS-matrix of the combined
SO|F region:

t = tm[1 − r ′

SOrm]−1tSO, (17)

t ′
= t ′

SO[1 − rmr ′

SO]−1t ′

m, (18)

r = rSO+ t ′

SOrm[1 − r ′

SOrm]−1tSO, (19)

r ′
= r ′

m + tm[1 − r ′

SOrm]−1r ′

SOt ′

m, (20)

S=

(
r t ′

t r ′

)
. (21)

Using these rules we obtain the symmetries of the combinedS matrix: 62tT(m)62 = t ′(−m)

and 62r T(m)62 = r (−m) which in turn leads to the Onsager relations. For the two probe
configuration,G(m) = G(−m). For the four probe configuration the transmission probabilities
satisfyTi j (m) = Tr(ti j t

†
i j ) = Tj i (−m). Focusing on the current/voltage configuration:I1 = −I3,

I2 = −I4, eV1 = µ3 − µ1 andeV2 = µ4 − µ2 [31] the relation between currents and voltages
can be expressed as [32]:(

I1

I2

)
=

(
α11(m) −α12(m)

−α21(m) α22(m)

)(
V1

V2

)
, (22)

where the coefficientsαi j can be found in equations (4a)–(4d) of [32]. The Onsager relations
can then be expressed as:

αi j (m) = α j i (−m). (23)

If we choose (say)I1 equal to zero, the relation between the applied current and the spin-Hall
voltage is:I2 = V1(α11α22 − α12α21)/α12. For phase incoherent conductors, we can ignore the
interference terms that arise while obtaining the transmission probabilities, but the Onsager
relations equation (23) are unaffected.

This analysis implies the equivalence of two Hall measurements: (i) settingI1 = 0 and
measuringV1 generated by an appliedI2 (figure1(a)) and (ii) switching magnetization direction,
settingI2 = 0 and measuringV2 (figure1(b)) generated by an appliedI1. In the next subsection,
we shall exploit this symmetry to gain insight into the boundary conditions for a R2DEG|2DEG
interface.
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3.2. Four-probe set-up and boundary conditions

We now use the Onsager relations from the previous subsection to better understand the spin
boundary value problem. Consider the four-probe set-up in figure1. When the ferromagnetic
lead is a Hall contact, the vanishing spin transfer derived by [26] for a (infinitely) wide contact
seems to imply that there is neither spin accumulation nor spin current near the ferromagnetic
reservoir and therefore no Hall voltage. On the other hand, in the Onsager equivalent
measurement, spins are injected from the ferromagnet into the normal region. Since in this case
the current is perpendicular to the boundary, the spin accumulations can be matched [26] and
a spin accumulation in the SO region exists. However, the diffusion equation (9) implies that
a spin accumulation gives rise to a voltage drop in the SO region [18, 35]. Onsager’s relations
discussed in the previous section imply that these two voltages must be the same provided the
injected currents are the same. Thus the result for an infinite contact that a CISA cannot enter
Hall contacts [26] appears to be misleading. In the following, we shall demonstrate that the spin
accumulations around the Hall contact must be close up to a numerical factor.

We now focus on the current–voltage set-up in figure1(b). In this case the current
is perpendicular to the boundary, so the spin accumulations are continuous across an ideal
R2DEG|2DEG interface. Assuming a diffusive ferromagnet magnetized parallel to the current
direction and ignoring the resistivity of the normal region, we obtain the spin current polarized
in the magnetization direction entering the R2DEG:

I m
s ∝

I

Ls

δD

3
, (24)

whereLs =
√

Dτs is the (Dyakonov–Perel) spin relaxation length in the R2DEG and

3 (m) = L−1
s DνRm ·µ+ L−1

sF DFνF(1− δD2/4). (25)

Here, LsF, DF, νF are the spin relaxation length, diffusion constant and average density
of states in the ferromagnet, respectively,δD = (ν+D+ − ν−D−)/(νFDF), ν± and D± are the
density of states and diffusion constants of the majority and minority spin electrons,µ is a
linear function ofm of order unity that depends on the details of the geometry of the contact.
The spin accumulation in the SO region localized within a depth ofLs at the contact aperture
acts as a dipole source for the diffusion equation:

∇
2n = ∇ · P, (26)

with dipole densityP = −4Ks−c(z× s)/D. We then estimate the potential drop in the Hall
direction to be:

φ =
Ks−c

D

1

W

∫
drs(r), (27)

which is proportional to the integrated spin accumulation∫
drs(r) ≈ LsI

δD

3
. (28)

The potential drop is therefore:

φb =
ατ

Ls

I

W

δD

3
=

α

vF

ξ√
1 +ξ2

I

W

δD

3
, (29)

up to a numerical constant.
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Figure 3. Geometry of the contact: (a) 2DEG with a constriction in the middle.
On the left side there is an applied homogeneous current density which is
modified near the opening. On the right side, the current density far away from
the contact as well as the net charge current flowing from the left region to
the right region is zero. However, there is a finite spin current and a finite spin
accumulation in the right region. The respective mobilities of the left and right
regions are assumed to be the same but the Rashba coefficients are different.
(b) An idealized version of (a) used in the calculations of this section. The origin
is chosen at the center of the opening with widthWH.

We now focus on the potential drop in the Onsager-equivalent setting in figure1(a).
According to the boundary condition equation (15), CISA does not enter the normal region.
Then the potential drop at the ferromagnet–2DEG interface would be zero in contradiction to
Onsager’s relations. Let us assume that the spin accumulations at the R2DEG and 2DEG near
the contact are equal to each other up to a numerical constantZ, i.e.s2DEG = Z sR2DEG. Then the
calculation of the potential drop proceeds similar to [29]. Again ignoring the resistance of the
2DEG region, we obtain a potential drop as:

φa = Z
α

vF

ξ√
1 +ξ2

I

W

δD

3
, (30)

up to a numerical factor. Comparing with equation (29) and noting that we have ignored all
numerical factors in the calculations above, we conclude thatZ must be a numerical factor of
the order of unity in order to satisfy Onsager’s relations. In the next section, we shall consider a
model for a narrow contact and show that this is indeed the case.

4. Model for spin accumulation near a contact

In this section, we focus on the current density and spin accumulation near a finite contact
between a half-infinite R2DEG and a half-infinite 2DEG (figure3(a)). The model we adopt is
sketched in figure3(b). Asymptotically, we have a constant current density in the left region
(R2DEG) in they-direction whereas in the right region (2DEG) the charge current density
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vanishes. The two regions are divided by an infinitely thin and high potential barrier, except for
an opening (the contact) of sizeWH centered at(0, 0).

We note that the solution to this problem closely follows that of an analogous one in
magnetostatics [36]. We proceed by epressing the chemical potentialn in terms of the (yet
undetermined) solutionφ of the Laplace equation:

n =
J0y

νD
+φ(x, y), if x < 0,

(31)
n = −φ(x, y), if x > 0,

whereJ0 is the bulk current density in the R2DEG. The asymmetric behaviour ofφ in left and
right regions is dictated by the current continuity atx = 0. The boundary conditions are:

φ(0, y) = −
J0y

2νD
, if |y| < WH/2,

(32)
∂φ(0, y)

∂x
= 0, if |y| > WH/2.

Next, we expandφ in terms of the modes of the Laplace equation:

φ(x, y) =

∫
∞

0
dk A(k)e−k|x| sin(ky). (33)

The solution to the diffusion equation with the above boundary conditions then reduces to
that of a dual integral equation:∫

∞

0
dk A(k) sin(ky) = −

J0y

2νD
, if |y| < WH/2,

(34)∫
∞

0
dk k A(k) sin(ky) = 0, if |y| > WH/2.

Such integral equations arise commonly in potential theory for mixed boundary conditions
(see [36] for the solution in 3D). In our case the solution is

A(k) = −
j0WH

4νD

J1(kWH/2)

k
, (35)

whereJ1 is the Bessel function of the first kind. We may now express the spin accumulations in
terms ofA(k). For the sake of simplicity, we at first disregard the precession term, proportional
to Kp, in the spin diffusion equations (9)–(11). We shall be particularly interested in the question
of whether CISA in the SO coupled region can leak out of the contact, into the normal (i.e. no
SO interaction) region. In the bulk of the R2DEG, the current is in they-direction, so the CISA
is polarized in thex-direction. Then the general solution to the spin diffusion equations in the
R2DEG region is given by:

sx(x, y)−
=

ατ

2

(
J0

νD
+

∂φ(x, y)

∂y

)
+ δsx(x, y), (36)

where δsx satisfies the source-free (i.e. zero charge current) diffusion equation that can be
expanded as:

δsx(x, y) =

∫
∞

0
dk B(k)e−κ|x| cos(ky), (37)
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whereκ =
√

k2 + L−2
s . For the 2DEG side (x > 0), a similar expansion gives:

s+
x (x, y) =

∫
∞

0
dk D(k)e−k|x| cos(ky). (38)

Using the boundary conditions that the spin current is continuous andsx is discontinuous by an
amount equal to(ατ/2)dn/dy [26], we find that the accumulation in the 2DEG satisfies:

D(k) = −
ατ

2
k A(k) − (κ/k)B(k), (39)

andD(k) is determined fromA(k), through the following dual integral equations:∫
∞

0
dq D(q)

(
1 +

q√
q2 +λ2

)
cos(qȳ) = −

∫
∞

0
dq A(q)

WHατq2√
q2 +λ2

cos(qȳ), (40)

if |ȳ| < 1, and∫
∞

0
dq q D(q) cos(qȳ) = 0 (41)

if |ȳ| > 1. Here, we have introduced dimensionless variablesq = kWH/2, ȳ = 2y/WH and
λ = WH/2Ls. In the limit λ � 1 (wide contact), expanding equation (40) to leading order in
λ−1 we obtain thatD(k) vanishes likeλ−1, in agreement with [26]. In the opposite limitλ � 1
(narrow contact), we again expand equation (40), this time to leading order inλ. We then identify
the resulting integral equation with they derivative of equation (34) times ατ/2. Thus, we
show thatD(k) = −

ατ

2 k A(k)/2 solves equation (40) up to orderλ2 corrections. Then the spin
accumulation in the 2DEG near a narrow contact is given by:

s+
x (0, y) ≈

ατ

4

dn(0, y)

dy
=

ατ J0

8νD
. (42)

We see that the spin accumulation in the 2DEG does not vanish even when the mobilities
of both sides are equal. For comparison, we also calculate the spin accumulation under the
assumption that there is no jump in the accumulations. We obtain that in this case the spin
accumulation is twice as large ass+

x (0, y). The presence of the term proportional toKp generates
z-polarized spin currents going into the 2DEG, owing to the precession ofy-polarized spin
accumulation as it diffuses out of the R2DEG, but does not change the general picture presented
above. We conclude that the choice of the boundary condition for spin accumulation near a
narrow contact is not important qualitatively, because either boundary condition produces an
identical result up to a numerical factor, in agreement with the Onsager’s relations.

5. Numerical results

In this section, we shall provide a numerical demonstration of the results of the previous section,
i.e. the possibility of extracting spin accumulations to a normal region with small contacts. We
focus on the discretized version of the Hamiltonian (1). Discretization with lattice spacinga
yields the following tight-binding representation ofH0 [37]:

H0 =
h̄2

2ma2

{∑
n,m

(4 +Ū )c†
n,mcn,m +

∑
n,m

([
− c†

n,mcn+1,m

−c†
n,mcn,m+1 + iᾱc†

n,mσycn+1,m − iᾱc†
n,mσxcn,m+1

]
+ h.c.

)}
, (43)
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Figure 4. Left panel: geometry used for numerical calculations. A disordered
wire with SO coupling and widthW connected to two clean leads with SO
coupling and to a disordered side-pocket of size 14a × 80a without SO coupling.
The colour plot shows the nonequilibrium density〈n〉 averaged over 60 000
disorder configurations for a system withLSO = 35a, W = 68a andWH = 20a.
The rapid oscillations are due to the finite number of channels in the wire.
Nevertheless, the slow varying part satisfies the diffusion equation. Right panel:
electron density〈n〉 of the system shown in the left panel as a function of vertical
coordinatey for fixed horizontal coordinatex = 34a (black solid line),x = 65a
(red circles) andx = 73a (green dashed line).

wheren(m) is the x(y)-coordinate of the site(n, m), ᾱ = (ma/h̄)α. The abbreviationc†
n,m =

(c†
n,m,+, c†

n,m,−) was used, wherec†
n,m,σ (cn,m,σ ) creates (annihilates) an electron at site(n, m)

with spin orientationσ with respect to thêz-direction. We also define the spin precession length
LSO = πa/ᾱ, which is related toLs by LSO = 2π Ls in the dirty limit, but remains well-defined
for ballistic systems where there is no spin relaxation. In this model, instead of dilute localized
scatterers, we shall assume Anderson disorder: the dimensionless onsite potentialŪ is set to a
different random valuēU ∈ [−U0/2;U0/2] at each lattice site(n, m) of the disordered region,
whereU0 accounts for the strength of the disorder [38]. The parameterU0 is related to the
momentum relaxation rateτ and the electron mean free pathl = vFτ by:

τ = 48a2 m

h̄U2
0

, l = 48a
√

εF

U 2
0

, (44)

whereεF = (h̄2/2m∗a2)−1EF andEF is the Fermi energy. In the rest of this section, we choose
U0 = 2 and εF = 0.38 in order to ensure that the transport through the system is diffusive.
With this choice of parameters the mean free pathl ≈ 7.4a is smaller than any length scale
characterizing the system.

In order to study the spin accumulation extracted to a normal region we focus on the set-up
shown in figure4, where a normal region (i.e.̄α = 0 ) with a size of 80a × 14a is attached to
a Rashba SO coupled wire of infinite length, widthW and constant finite SO couplinḡα > 0
via a contact of sizeWH. Disorder of strengthU0 is present inside the normal region and in the
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0 0.2 0.4

α−

2a

0a

ατ / 2

〈sx
B 〉 / 〈dnB/dy〉  ; W = 37a

〈sx
B 〉 / 〈dnB/dy〉  ; W = 59a

Figure 5. The ratio〈sB
x 〉/〈dnB/dx〉 as a function of̄α calculated numerically for

two different geometries withWH = 20a and W = 37a (black dots),W = 59a
(blue squares) and estimated as in equation (11) (red line).〈sB

x 〉 and〈dnB/dx〉

have been evaluated by averaging over 20 000 disorder configurations as well as
over the area indicated by the blue square shown in the bottom panel of figure6.

SO region for−50a < y < 50a. We shall use the nonequilibrium Green function method [39]
to calculate the lesser Green functionG<(Er ; Er ′) which is related to spin accumulation according
to

sx(Er ) = −
1
2i Tr[σxG<(Er ; Er )] (45)

and to the electron density through

n(Er ) = −i Tr[G<(Er ; Er )]. (46)

Here, we focus on the ensemble averaged accumulations〈sx〉 and〈n〉. The variances are also of
interest [40, 41], but we shall not consider them here.

We apply a small biasδV between the chemical potentials of the top and the bottom lead
and generate a current iny-direction. The left panel of figure4 shows the electron density〈n〉

inside the system when a current is passed from the top to the bottom. Due to the disorder in
the central region (−50a < y < 50a) the electron density decreases from top to bottom. In the
right panel of figure4, we show the dependence of〈n〉 on y for three different values ofx. We
observe that〈n〉 decreases linearly in the bulk of the SO region (solid line), showing that the
system is diffusive. Forx = 65a (circles) the side contact atx = 68a disturbs the homogeneous
current flow. Inside the normal region,x = 73a, 〈n〉 is approximately constant (dashed line).

The current driven byδV , generates a spin accumulation in the bulk of the R2DEG.
According to equation (10), 〈sB

x 〉 = (ατ/2)(〈dnB/dy〉) in the bulk. Our simulations agree well
with the diffusive result as shown in figure5 for large enoughᾱ. For smaller values of̄α,
LSO becomes comparable to the overall length of the disorder regionL = 100a. In this regime
ballistic processes can no longer be neglected, causing slight deviations from the diffusive
theory.
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Figure 6. Top left panel: spin accumulation〈sx〉 in a quantum wire of width
W = 52a with an abrupt drop of the SO coupling strength atx = 37a from
the constant̄α = π/25(LSO = 25a) for x < 37a to zero on the other side. Top
right panel: spin accumulation〈sx〉 for a system as shown in figure4 with
W = 37a, WH = 80a andLSO = 25a. Bottom panel: same as top right panel with
WH = 20a. In all three panels,〈sx〉 is obtained by averaging over 50 000 disorder
configurations.

Having demonstrated that our numerical system is diffusive, we now focus on the spin
accumulation in the normal region. In the geometry we have adopted (i.e. a side pocket rather
than a side lead), based on the diffusion equations, we expect only CISA (as opposed to spin Hall
accumulation) to be present in the normal region. Therefore, below we focus on thex component
of the spin accumulation. In figure6, we show the spin density〈sx〉 averaged over 50 000
impurity configurations inside three distinct systems withLSO = 25a. We note that in agreement
with [26], when the interface between R2DEG and 2DEG is infinite (top left panel), the spin
accumulation in the 2DEG is much smaller than the bulk spin accumulation. Nevertheless, when
the size of the contact is made smaller (top right panel), we observe that the spin accumulation
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Figure 7. Left panel: average spin accumulation inside the normal region〈sP
x 〉

relative to the accumulation in the bulk of the SO region〈sB
x 〉 for various

geometries averaged over 20 000 disorder configurations as a function of
LSO/WH. Right panel:〈sP

x 〉/〈s
B
x 〉 for two different geometries averaged over

60 000 disorder configurations.

inside the normal region increases, reaching a comparable value to the spin accumulation in the
bulk when the size of the opening is comparable toLSO (bottom panel). In order to demonstrate
this further, we evaluate〈sB

x 〉 by averaging the spin accumulation in the bulk over the blue
square shown in figure6 and〈sP

x 〉 by averaging the spin accumulation in the normal conducting
side-pocket over the white square shown in figure6. In figure 7, we plot the ratio〈sP

x 〉/〈s
B
x 〉

as a function ofLSO/WH, for various values of system and contact sizes. We observe that
starting from smallLSO/WH, the spin accumulation increases withLSO/WH, approaching to
≈0.5–0.7. This value is in between the estimates 0.5 and 1.0 based on diffusion equations using
the boundary conditions (15) and (14), respectively. For small values ofLSO/WH (figure7, left
panel),〈sP

x 〉/〈s
B
x 〉 is of order(LSO/WH) in agreement with the analytical calculation above. We

note, however, that in this limit the system we considered is close to the clean limitLSO ∼ l ,
where deviations from the diffusion equations might be expected. Currently, we are working on
larger systems in order to explore smallLSO/WH in the dirty limit [42].

6. Conclusions

In this work, we considered the problem of extracting current-induced spins generated in a
region with SO coupling into a region with vanishing (or small) SO coupling, where the spin
relaxation time is long. To this end, we focused on the spin boundary conditions between a SO
coupled region and a normal region. Although for an infinite interface the spins are confined to
the SO region via the boundary SHE, we have shown by solving a model problem as well as
doing numerical simulations that for a finite interface the spin accumulations generated in the
SO region can be extracted to a normal region. The amount of extracted spin accumulation is
equal to that of the SO region up to a geometrical factor of the order of unity.

New Journal of Physics 9 (2007) 382 (http://www.njp.org/)

http://www.njp.org/


16

Acknowledgments

We profited from discussions with Y Tserkovnyak. IA and GEWB would like to thank
A Brataas and Y Tserkovnyak for making a preprint of [27] available to them. IA and KR
acknowledge support through the Deutsche Forschungsgemeinschaft within the cooperative
research center SFB 689 ‘Spin phenomena in reduced dimensions’. MS acknowledges support
through the Studienstiftung des Deutschen Volkes. MW acknowledges support through the
Deutsche Forschungsgemeinschaft within GRK638. GEWB has been supported by the FOM,
NanoNed, and EC Contract IST-033749 ‘DynaMax’.

References
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