63 research outputs found

    Microscopic dynamics underlying the anomalous diffusion

    Full text link
    The time dependent Tsallis statistical distribution describing anomalous diffusion is usually obtained in the literature as the solution of a non-linear Fokker-Planck (FP) equation [A.R. Plastino and A. Plastino, Physica A, 222, 347 (1995)]. The scope of the present paper is twofold. Firstly we show that this distribution can be obtained also as solution of the non-linear porous media equation. Secondly we prove that the time dependent Tsallis distribution can be obtained also as solution of a linear FP equation [G. Kaniadakis and P. Quarati, Physica A, 237, 229 (1997)] with coefficients depending on the velocity, that describes a generalized Brownian motion. This linear FP equation is shown to arise from a microscopic dynamics governed by a standard Langevin equation in presence of multiplicative noise.Comment: 4 pag. - no figures. To appear on Phys. Rev. E 62, September 200

    Effect of Density Inhomogeneity on YORP: The case of Itokawa

    Full text link
    The effect of density inhomogeneity on the YORP effect for a given shape model is investigated. A density inhomogeneity will cause an offset between the center of figure and the center of mass and a re-orientation of the principal axes away from those associated with the shape alone. Both of these effects can alter the predicted YORP rate of change in angular velocity and obliquity. We apply these corrections to the Itokawa shape model and find that its YORP angular velocity rate is sensitive to offsets between its center of mass and center of figure, with a shift on the order of 10 meters being able to change the sign of the YORP effect for that asteroid. Given the non-detection of YORP for Itokawa as of 2008, this can shed light on the density distribution within that body. The theory supports a shift of the asteroid center of mass towards Itokawa's neck region, where there is an accumulation of finer gravels. Detection of the YORP effect for Itokawa should provide some strong constraints on its density distribution. This theory could also be applied to asteroids visited by future spacecraft to constrain density inhomogeneities.Comment: 23 pages, 3 figure

    Minimum Energy Configurations in the NN-Body Problem and the Celestial Mechanics of Granular Systems

    Full text link
    Minimum energy configurations in celestial mechanics are investigated. It is shown that this is not a well defined problem for point-mass celestial mechanics but well-posed for finite density distributions. This naturally leads to a granular mechanics extension of usual celestial mechanics questions such as relative equilibria and stability. This paper specifically studies and finds all relative equilibria and minimum energy configurations for N=1,2,3N=1,2,3 and develops hypotheses on the relative equilibria and minimum energy configurations for N≫1N\gg 1 bodies.Comment: Accepted for publication in Celestial Mechanics and Dynamical Astronom

    Periodic orbits in the gravity field of a fixed homogeneous cube

    Full text link
    In the current study, the existence of periodic orbits around a fixed homogeneous cube is investigated, and the results have powerful implications for examining periodic orbits around non-spherical celestial bodies. In the two different types of symmetry planes of the fixed cube, periodic orbits are obtained using the method of the Poincar\'e surface of section. While in general positions, periodic orbits are found by the homotopy method. The results show that periodic orbits exist extensively in symmetry planes of the fixed cube, and also exist near asymmetry planes that contain the regular Hex cross section. The stability of these periodic orbits is determined on the basis of the eigenvalues of the monodromy matrix. This paper proves that the homotopy method is effective to find periodic orbits in the gravity field of the cube, which provides a new thought of searching for periodic orbits around non-spherical celestial bodies. The investigation of orbits around the cube could be considered as the first step of the complicated cases, and helps to understand the dynamics of orbits around bodies with complicated shapes. The work is an extension of the previous research work about the dynamics of orbits around some simple shaped bodies, including a straight segment, a circular ring, an annulus disk, and simple planar plates.Comment: 23 pages, 10 figures, accepted for publication in Astrophysics & Space Scienc

    Equilibria, periodic orbits around equilibria, and heteroclinic connections in the gravity field of a rotating homogeneous cube

    Full text link
    This paper investigates the dynamics of a particle orbiting around a rotating homogeneous cube, and shows fruitful results that have implications for examining the dynamics of orbits around non-spherical celestial bodies. This study can be considered as an extension of previous research work on the dynamics of orbits around simple shaped bodies, including a straight segment, a circular ring, an annulus disk, and simple planar plates with backgrounds in celestial mechanics. In the synodic reference frame, the model of a rotating cube is established, the equilibria are calculated, and their linear stabilities are determined. Periodic orbits around the equilibria are computed using the traditional differential correction method, and their stabilities are determined by the eigenvalues of the monodromy matrix. The existence of homoclinic and heteroclinic orbits connecting periodic orbits around the equilibria is examined and proved numerically in order to understand the global orbit structure of the system. This study contributes to the investigation of irregular shaped celestial bodies that can be divided into a set of cubes.Comment: 29 pages, 16 figures, accepted for publication in Astrophysics & Space Scienc

    Tidal Evolution of Close Binary Asteroid Systems

    Get PDF
    We provide a generalized discussion of tidal evolution to arbitrary order in the expansion of the gravitational potential between two spherical bodies of any mass ratio. To accurately reproduce the tidal evolution of a system at separations less than five times the radius of the larger primary component, the tidal potential due to the presence of a smaller secondary component is expanded in terms of Legendre polynomials to arbitrary order rather than truncated at leading order as is typically done in studies of well-separated system like the Earth and Moon. The equations of tidal evolution including tidal torques, the changes in spin rates of the components, and the change in semimajor axis (orbital separation) are then derived for binary asteroid systems with circular and equatorial mutual orbits. Accounting for higher-order terms in the tidal potential serves to speed up the tidal evolution of the system leading to underestimates in the time rates of change of the spin rates, semimajor axis, and mean motion in the mutual orbit if such corrections are ignored. Special attention is given to the effect of close orbits on the calculation of material properties of the components, in terms of the rigidity and tidal dissipation function, based on the tidal evolution of the system. It is found that accurate determinations of the physical parameters of the system, e.g., densities, sizes, and current separation, are typically more important than accounting for higher-order terms in the potential when calculating material properties. In the scope of the long-term tidal evolution of the semimajor axis and the component spin rates, correcting for close orbits is a small effect, but for an instantaneous rate of change in spin rate, semimajor axis, or mean motion, the close-orbit correction can be on the order of tens of percent.Comment: 40 pages, 2 tables, 8 figure
    • …
    corecore