1,233 research outputs found
The influence of land cover roughness on the results of high resolution tsunami inundation modeling
In this paper a local case study is presented in which detailed inundation simulations have been performed to support damage analysis and risk assessment related to the 2004 tsunami in Phang Nga and Phuket, Thailand. Besides tsunami sources, bathymetry and topography, bottom roughness induced by vegetation and built environment is considered to influence inundation characteristics, such as water depths or flow velocities and therefore attracts major attention in this work. Plenty of information available on the 2004 tsunami event, high-resolution satellite imagery and extensive field measurements to derive land cover information and forest stand parameters facilitated the generation of topographic datasets, land cover maps and site-specific Manning values for the most prominent land cover classes in the study areas. The numerical models ComMIT and Mike 21 FM were used to hindcast the observed tsunami inundation and to draw conclusions on the influence of land cover on inundation patterns. Results show a strong influence of dense vegetation on flow velocities, which were reduced by up to 50% by mangroves, while the inundation extent is influenced only to a lesser extent. In urban areas, the disregard of buildings in the model led to a significant overestimation of the inundation extent. Hence different approaches to consider buildings were used and analyzed in the model. The case study highlights the importance and quantifies the effects of considering land cover roughness in inundation simulations used for local risk assessment
Biosynthesis of Mitochondrial Porin and Insertion into the Outer Mitochondrial Membrane of Neuruspora crassa
Mitochondrial porin, the major protein of the outer mitochondrial membrane is synthesized by free cytoplasmic polysomes. The apparent molecular weight of the porin synthesized in homologous or heterologous cell-free systems is the same as that of the mature porin. Transfer in vitro of mitochondrial porin from the cytosolic fraction into the outer membrane of mitochondria could be demonstrated. Before membrane insertion, mitochondrial porin is highly sensitive to added proteinase; afterwards it is strongly protected. Binding of the precursor form to mitochondria occurs at 4°C and appears to precede insertion into the membrane. Unlike transfer of many precursor proteins into or across the inner mitochondrial membrane, assembly of the porin is not dependent on an electrical potential across the inner membrane
Submillimeter Emission from Water in the W3 Region
We have mapped the submillimeter emission from the 1(10)-1(01) transition of
ortho-water in the W3 star-forming region. A 5'x5' map of the W3 IRS4 and W3
IRS5 region reveals strong water lines at half the positions in the map. The
relative strength of the Odin lines compared to previous observations by SWAS
suggests that we are seeing water emission from an extended region. Across much
of the map the lines are double-peaked, with an absorption feature at -39 km/s;
however, some positions in the map show a single strong line at -43 km/s. We
interpret the double-peaked lines as arising from optically thick,
self-absorbed water emission near the W3 IRS5, while the narrower blue-shifted
lines originate in emission near W3 IRS4. In this model, the unusual appearance
of the spectral lines across the map results from a coincidental agreement in
velocity between the emission near W3 IRS4 and the blue peak of the more
complex lines near W3 IRS5. The strength of the water lines near W3 IRS4
suggests we may be seeing water emission enhanced in a photon-dominated region.Comment: Accepted to A&A Letters as part of the special Odin issue; 4 page
Thermoelectric properties of lead chalcogenide core-shell nanostructures
We present the full thermoelectric characterization of nanostructured bulk
PbTe and PbTe-PbSe samples fabricated from colloidal core-shell nanoparticles
followed by spark plasma sintering. An unusually large thermopower is found in
both materials, and the possibility of energy filtering as opposed to grain
boundary scattering as an explanation is discussed. A decreased Debye
temperature and an increased molar specific heat are in accordance with recent
predictions for nanostructured materials. On the basis of these results we
propose suitable core-shell material combinations for future thermoelectric
materials of large electric conductivities in combination with an increased
thermopower by energy filtering.Comment: 12 pages, 8 figure
The Cleveland School: Artists of the Western Reserve
William Scheele introduces an exhibition, writing on the rise of the “Cleveland School” of painters in the early 20th century. Conference paper; originally published in Western Reserve Studies Symposium (2nd:1987 : Cleveland, Ohio
Cell-Free Synthesis of the Mitochondrial ADP/ATP Carrier Protein of Neurospora crassa
ADP/ATP carrier protein was synthesized in heterologous cell-free systems programmed with Neurospora poly(A)-containing RNA and homologous cell-free systems from Neurospora. The apparent molecular weight of the product obtained in vitro was the same as that of the authentic mitochondrial protein. The primary translation product obtained in reticulocyte lysates starts with formylmethionine when formylated initiator methionyl-tRNA (fMet-tRNAfMet) was present. The product synthesized in vitro was released from the ribosomes into the postribosomal supernatant.
The evidence presented indicates that the ADP/ATP carrier is synthesized as a polypeptide with the same molecular weight as the mature monomeric protein and does not carry an additional sequence
First detection of NH3 (1,0 - 0,0) from a low mass cloud core: On the low ammonia abundance of the rho Oph A core
Odin has successfully observed the molecular core rho Oph A in the 572.5 GHz
rotational ground state line of ammonia, NH3 (J,K = 1,0 - 0,0). The
interpretation of this result makes use of complementary molecular line data
obtained from the ground (C17O and CH3OH) as part of the Odin preparatory work.
Comparison of these observations with theoretical model calculations of line
excitation and transfer yields a quite ordinary abundance of methanol, X(CH3OH)
= 3e-9. Unless NH3 is not entirely segregated from C17O and CH3OH, ammonia is
found to be significantly underabundant with respect to typical dense core
values, viz. X(NH3) = 8e-10.Comment: 4 pages, 2 figures, 2 tables, to appear in Astron. Astrophys. Letter
- …
