38 research outputs found
Instance optimal Crouzeix-Raviart adaptive finite element methods for the Poisson and Stokes problems
We extend the ideas of Diening, Kreuzer, and Stevenson [Instance optimality
of the adaptive maximum strategy, Found. Comput. Math. (2015)], from conforming
approximations of the Poisson problem to nonconforming Crouzeix-Raviart
approximations of the Poisson and the Stokes problem in 2D. As a consequence,
we obtain instance optimality of an AFEM with a modified maximum marking
strategy
Error analysis of a variational multiscale stabilization for convection-dominated diffusion equations in 2d
We formulate a stabilized quasi-optimal Petrov-Galerkin method for singularly
perturbed convection-diffusion problems based on the variational multiscale
method. The stabilization is of Petrov-Galerkin type with a standard finite
element trial space and a problem-dependent test space based on pre-computed
fine-scale correctors. The exponential decay of these correctors and their
localisation to local patch problems, which depend on the direction of the
velocity field and the singular perturbation parameter, is rigorously
justified. Under moderate assumptions, this stabilization guarantees stability
and quasi-optimal rate of convergence for arbitrary mesh P\'eclet numbers on
fairly coarse meshes at the cost of additional inter-element communication
Comparison results for the Stokes equations
This paper enfolds a medius analysis for the Stokes equations and compares
different finite element methods (FEMs). A first result is a best approximation
result for a P1 non-conforming FEM. The main comparison result is that the
error of the P2-P0-FEM is a lower bound to the error of the Bernardi-Raugel (or
reduced P2-P0) FEM, which is a lower bound to the error of the P1
non-conforming FEM, and this is a lower bound to the error of the MINI-FEM. The
paper discusses the converse direction, as well as other methods such as the
discontinuous Galerkin and pseudostress FEMs.
Furthermore this paper provides counterexamples for equivalent convergence
when different pressure approximations are considered. The mathematical
arguments are various conforming companions as well as the discrete inf-sup
condition
Thermo-optical interactions in a dye-microcavity photon Bose-Einstein condensate
Superfluidity and Bose-Einstein condensation are usually considered as two
closely related phenomena. Indeed, in most macroscopic quantum systems, like
liquid helium, ultracold atomic Bose gases, and exciton-polaritons,
condensation and superfluidity occur in parallel. In photon Bose-Einstein
condensates realized in the dye microcavity system, thermalization does not
occur by direct interaction of the condensate particles as in the above
described systems, i.e. photon-photon interactions, but by absorption and
re-emission processes on the dye molecules, which act as a heat reservoir.
Currently, there is no experimental evidence for superfluidity in the dye
microcavity system, though effective photon interactions have been observed
from thermo-optic effects in the dye medium. In this work, we theoretically
investigate the implications of effective thermo-optic photon interactions, a
temporally delayed and spatially non-local effect, on the photon condensate,
and derive the resulting Bogoliubov excitation spectrum. The calculations
suggest a linear photon dispersion at low momenta, fulfilling the Landau's
criterion of superfluidity . We envision that the temporally delayed and
long-range nature of the thermo-optic photon interaction offer perspectives for
novel quantum fluid phenomena.Comment: 21 pages, 5 figure
Rot-free mixed finite elements for gradient elasticity at finite strains
Through enrichment of the elastic potential by the second-order gradient of deformation, gradient elasticity formulations are capable of taking nonlocal effects into account. Moreover, geometry-induced singularities, which may appear when using classical elasticity formulations, disappear due to the higher regularity of the solution. In this contribution, a mixed finite element discretization for finite strain gradient elasticity is investigated, in which instead of the displacements, the first-order gradient of the displacements is the solution variable. Thus, the C1 continuity condition of displacement-based finite elements for gradient elasticity is relaxed to C0. Contrary to existing mixed approaches, the proposed approach incorporates a rot-free constraint, through which the displacements are decoupled from the problem. This has the advantage of a reduction of the number of solution variables. Furthermore, the fulfillment of mathematical stability conditions is shown for the corresponding small strain setting. Numerical examples verify convergence in two and three dimensions and reveal a reduced computing cost compared to competitive formulations. Additionally, the gradient elasticity features of avoiding singularities and modeling size effects are demonstrated
A class of mixed finite element methods based on the Helmholtz decomposition in computational mechanics
Diese Dissertation verallgemeinert die nichtkonformen Finite-Elemente-Methoden (FEMn) nach Morley und Crouzeix und Raviart durch neue gemischte Formulierungen für das Poisson-Problem, die Stokes-Gleichungen, die Navier-Lamé-Gleichungen der linearen Elastizität und m-Laplace-Gleichungen der Form für beliebiges m=1,2,3,... Diese Formulierungen beruhen auf Helmholtz-Zerlegungen. Die neuen Formulierungen gestatten die Verwendung von Ansatzräumen beliebigen Polynomgrades und ihre Diskretisierungen stimmen für den niedrigsten Polynomgrad mit den genannten nicht-konformen FEMn überein. Auch für höhere Polynomgrade ergeben sich robuste Diskretisierungen für fast-inkompressible Materialien und Approximationen für die Lösungen der Stokes-Gleichungen, die punktweise die Masse erhalten. Dieser Ansatz erlaubt außerdem eine Verallgemeinerung der nichtkonformen FEMn von der Poisson- und der biharmonischen Gleichung auf m-Laplace-Gleichungen für beliebiges m>2. Ermöglicht wird dies durch eine neue Helmholtz-Zerlegung für tensorwertige Funktionen. Die neuen Diskretisierungen lassen sich nicht nur für beliebiges m einheitlich implementieren, sondern sie erlauben auch Ansatzräume niedrigster Ordnung, z.B. stückweise affine Polynome für beliebiges m. Hat eine Lösung der betrachteten Probleme Singularitäten, so beeinträchtigt dies in der Regel die Konvergenz so stark, dass höhere Polynomgrade in den Ansatzräumen auf uniformen Gittern dieselbe Konvergenzrate zeigen wie niedrigere Polynomgrade. Deshalb sind gerade für höhere Polynomgrade in den Ansatzräumen adaptiv generierte Gitter unabdingbar. Neben der A-priori- und der A-posteriori-Analysis werden in dieser Dissertation optimale Konvergenzraten für adaptive Algorithmen für die neuen Diskretisierungen des Poisson-Problems, der Stokes-Gleichungen und der m-Laplace-Gleichung bewiesen. Diese werden auch in den numerischen Beispielen dieser Dissertation empirisch nachgewiesen.This thesis generalizes the non-conforming finite element methods (FEMs) of Morley and Crouzeix and Raviart by novel mixed formulations for the Poisson problem, the Stokes equations, the Navier-Lamé equations of linear elasticity, and mth-Laplace equations of the form for arbitrary m=1,2,3,... These formulations are based on Helmholtz decompositions. The new formulations allow for ansatz spaces of arbitrary polynomial degree and its discretizations coincide with the mentioned non-conforming FEMs for the lowest polynomial degree. Also for higher polynomial degrees, this results in robust discretizations for almost incompressible materials and approximations of the solution of the Stokes equations with pointwise mass conservation. Furthermore this approach also allows for a generalization of the non-conforming FEMs for the Poisson problem and the biharmonic equation to mth-Laplace equations for arbitrary m>2. A new Helmholtz decomposition for tensor-valued functions enables this. The new discretizations allow not only for a uniform implementation for arbitrary m, but they also allow for lowest-order ansatz spaces, e.g., piecewise affine polynomials for arbitrary m. The presence of singularities usually affects the convergence such that higher polynomial degrees in the ansatz spaces show the same convergence rate on uniform meshes as lower polynomial degrees. Therefore adaptive mesh-generation is indispensable especially for ansatz spaces of higher polynomial degree. Besides the a priori and a posteriori analysis, this thesis proves optimal convergence rates for adaptive algorithms for the new discretizations of the Poisson problem, the Stokes equations, and mth-Laplace equations. This is also demonstrated in the numerical experiments of this thesis