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Abstract
Through enrichment of the elastic potential by the second-order gradient of
deformation, gradient elasticity formulations are capable of taking nonlocal
effects into account. Moreover, geometry-induced singularities, which may
appear when using classical elasticity formulations, disappear due to the higher
regularity of the solution. In this contribution, a mixed finite element discretiza-
tion for finite strain gradient elasticity is investigated, in which instead of the
displacements, the first-order gradient of the displacements is the solution vari-
able. Thus, the C1 continuity condition of displacement-based finite elements
for gradient elasticity is relaxed to C0. Contrary to existing mixed approaches,
the proposed approach incorporates a rot-free constraint, through which the
displacements are decoupled from the problem. This has the advantage of a
reduction of the number of solution variables. Furthermore, the fulfillment of
mathematical stability conditions is shown for the corresponding small strain
setting. Numerical examples verify convergence in two and three dimensions
and reveal a reduced computing cost compared to competitive formulations.
Additionally, the gradient elasticity features of avoiding singularities and mod-
eling size effects are demonstrated.

K E Y W O R D S

finite strains, gradient elasticity, higher-order gradients, mixed finite elements, size effects

1 INTRODUCTION

The elastic potential in classical solid mechanical modeling is usually a functional of the first order gradient of defor-
mation. Both in small strain and in finite strain elasticity this approach is sufficient for many applications. However,
they do not take into account the finite resolution of the microstructure of the material. If the modeled geometry has,
for example, sharp corners this can lead to nonphysical singularities of the strains and stresses resulting from these local
models. In consequence, corresponding finite element simulations yield results, which are dependent on the mesh size
around these singularities and numerical problems may arise. Due to the local nature of the classical elasticity formu-
lations, the influence of material heterogeneities on the global elastic behavior is not taken into account. This becomes
relevant when modeling specialized materials (such as metamaterials), in which material heterogeneities approach the
scale of the macroscopic mechanical fields. Nonlocal approaches such as gradient elasticity, where the elastic potential is
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enriched by a dependency on the second-order displacement gradient represent a remedy in these cases. Although non-
local approaches have been in existence for many years, due to recent developments of specialized materials, the research
of formulations has experienced an increased interest.

Various generalized continuum models are based on the theory of the Cosserat brothers,1 in which rotational degrees
of freedom derived from the balance of angular momentum at the material point are considered in order to take into
account nonlocal effects. Recent contributions have been made in this field (such as Reference 2, among several others). In
the frequently cited, more general theory of Reference 3, microdeformations are used to take into account microstructural
effects on the material behavior. As a special case, in Reference 3 the second-order gradient elasticity approach is intro-
duced. In this case, microstuctural effects are modeled through the enhancement of the elastic potential by a dependency
on second-order gradients of displacements. For an overview of gradient elasticity approaches the reader is referred to
Reference 4 (see also Reference 5 for a classification with respect to other nonlocal models). While the gradient elasticity
approach itself is rather straightforward, a remaining research challenge is the identification and physical interpretation
of the additional constitutive parameters that are appearing in the gradient elasticity formulation. Recent developments
have been made by Reference 6 in which a determination of the parameters based on action principles has been proposed
(see also Reference 7). Another field of study which has experienced recent increase of interest is the development of mod-
els, which incorporate flexoelectric effects. In these models, second-order displacement gradients are coupled with electric
polarization fields, which are of increasing interest in the research of nanoelectronics and nanowire semiconductors.8

The main challenge in the development of numerical solution procedures for gradient-enhanced models is the
increased continuity requirement for the interpolation functions of the solution fields, namely, C1 continuity require-
ment for displacement-based finite elements. Straightforward corresponding C1-continuous finite elements require high
polynomial orders of the interpolation functions and additional element degrees of freedom corresponding to the gradi-
ents of the solution fields. An investigation of a C1-continuous finite element formulation for gradient elasticity can be
found in Reference 9. Another common approach is the use of isogeometric analysis (IGA) as discretization scheme. See
Reference 10 for an IGA model for finite strain gradient elasticity, whereas in References 11 and 12 flexoelectric material
behavior is modeled. While the realization of the C1 continuity condition is straightforward with IGA, the discretization
of complex (practically relevant) structures remain a challenge. Alternatively, mixed finite elements can be used. Through
the introduction of additional mixed solution variables C0-continuous interpolation functions can be used. In Reference
13 a mixed finite element formulation is investigated, which incorporates both displacements and Mindlins microde-
formations as solution variables. In the rather recent contribution of Reference 14 various finite element discretizations
incorporating the displacement and strain field as solution variables are investigated in a two-dimensional (2D) linear
small strain setting. Another small strain finite element approach is introduced in Reference 15, where both first and sec-
ond displacement gradients are introduced as mixed variables and corresponding numerical investigations focus on the
incorporation of point and line forces. The small strain two-dimensional (2D) and three-dimensional (3D) mixed formu-
lations of References 16 and 17, respectively, incorporate displacements, displacement gradients and Lagrange multipliers
as solution variables. For a corresponding mathematical investigation with respect to inf-sup stability and an extension
to finite strains see Reference 18. So far, the main challenges of these existing mixed formulations is the computational
costliness due to a large number of degrees of freedom and the lack of discrete inf-sup stability in some cases.

In this contribution a decoupled approach, based on the polyharmonic operator splitting approach of Reference 19, is
investigated for the hyperelastic finite-strain gradient elasticity problem. In Section 3.1 the continuous large deformation
variational formulation is introduced. Specifically, the case is examined in which the constitutive parameter correspond-
ing to the nonlocal part of the formulation is significantly smaller than for the local part. Through a stabilization term, a
loss of stability in this case (as also apparent in the existing non-decoupled mixed approaches of Reference 18, following
References 16 and 17) can be avoided. In the following Section 3.2 several finite element discretizations, both in 2D and in
3D, are investigated. Numerical experiments (Section 4) verify convergence of the proposed formulations. In the 2D case
a cost reduction compared to the nondecoupled mixed approach of Reference 18 (which is based on References 16 and 17)
is shown. Furthermore, the gradient elasticity features of avoiding singularities and modeling size effects are illustrated.

2 FUNDAMENTALS

Section 2.1 gives preliminary remarks on notation, finite strain kinematics, and the Helmholtz decomposition, which is
used for the decomposed Lagrange multiplier method introduced in Section 3. An overview on the continuum mechanical
framework of the gradient elasticity approach is given in Section 2.4.
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2.1 Tensor operations

For the dimension d∈ {2, 3} let T(n) be a tensor-valued function of order n ∈ N0 over (Rd)n. We define the scalar product T ⋅
T ∶ (Rd)n × (Rd)n → R

n. Let ∧ denote the cross product, which is applied row-wise to tensor-valued functions. Explicitly,
the cross products of a second-order tensor T and a vector s take the forms

T ∧ s =
⎡⎢⎢⎢⎣
T13s2 − T12s3 T11s3 − T13s1 T12s1 − T11s2

T23s2 − T22s3 T21s3 − T23s1 T22s1 − T21s2

T33s2 − T32s3 T31s3 − T33s1 T32s1 − T31s2

⎤⎥⎥⎥⎦ and T ∧ s =

[
T12s1 − T11s2

T22s1 − T21s2

]
, (1)

for d= 3 and d= 2, respectively. We define the row-wise applied derivative operators

∇T(n) ∶= 𝜕jTi1 … in ei1 ⊗ … ⊗ ein ⊗ ej, (2)

Div T(n) ∶= 𝜕in Ti1 … in ei1 ⊗ … ⊗ ein−1 , (3)

Rot T(n) ∶= −𝜕jTi1 … in ei1 ⊗ … ⊗ ein ∧ ej, (4)

where ei(•) denote Cartesian base vectors.

2.2 Finite strain kinematics

For each position vector X ∈  of a material point in the reference configuration there exists a corresponding position
vector x ∈  in the deformed configuration defined by the deformation map 𝝋 ∶  →  . Through 𝝋(X, t) = X + u(X, t),
the deformation map can be described in terms of the displacement function u. We denote the deformation gradient by

F = ∇𝝋 = 1 + ∇u. (5)

Within the scope of this contribution all derivative operators are with respect to coordinates in the reference configuration.

2.3 Helmholtz decomposition

Let  be a bounded, simply connected domain. Then, a second-order tensor function 𝚲 can be decomposed (see
Reference 20, corollary 2.31) into a solenoidal (divergence-free) part 𝚲c and an irrotational (rot-free) part 𝚲g:

𝚲 = 𝚲c + 𝚲g. (6)

Consequently, the two parts can be expressed by gradient and rotation functions, respectively:

𝚲c = Rot 𝚽 and 𝚲g = −∇g, (7)

with g ∈ H1
0 being a vector-valued function and 𝚽 ∈ , where  is the space of vector-valued L2 functions with vanish-

ing integral mean for d= 2, while  is the space for tensor-valued L2 functions with vanishing divergence and normal
boundary conditions for d= 3; see Section 3.1.6 for details.

2.4 Gradient elasticity theory

When considering a gradient-elastic boundary value problem, the boundary of a given body  can be decomposed
as follows: 𝜕 = ΓD ∪ ΓN = ΓH ∪ ΓM . Here, ΓD and ΓN denote the standard Dirichlet- and Neumann boundary, while
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ΓH and ΓM denote a Dirichlet- and Neumann boundary corresponding to higher-order quantities (cf. References 3,21).
The gradient elasticity solution u is the minimizer of the elastic potential

𝛱[u] = 𝛱 int[u] +𝛱ext[u] ⇒ min
u
, with (8)

𝛱 int[u] = ∫
𝜓(F(∇u),∇F(∇u))dV , (9)

𝛱ext[u] = −∫
u ⋅ f dV − ∫ΓN

u ⋅ t dA − ∫ΓM

∇u N ⋅ r dA. (10)

Here, 𝛱 int denotes the volume integral of the internal elastic energy density 𝜓 . 𝛱ext denotes the external potential of
volume load f and surface traction t. Due to the appearance of second order displacement gradients in (8), the minimizer
is sought to be in the Sobolev space H2 of twice differentiable functions. Moreover we denote the displacement boundary
u = u and ∇u ∧ N = ∇u ∧ N on ΓD and ∇u N = ∇u N on ΓH . Here N denotes the unit normal surface vector of the
body in reference configuration and u denotes a prescribed displacement function. In what follows, the higher order
surface traction vector (cf. Reference 10, see also Reference 3) r = 0 is assumed to be homogeneous on ΓM . Applying the
stationarity condition leads to the following variational problem: For given f, t, and the previously discussed essential
boundary conditions, find u ∈ H2 such that

∫
(∇𝛿u ⋅ P + ∇2𝛿u ⋅ G) dV = −𝛱ext[𝛿u], (11)

for all 𝛿u. Here, we denote ∇2(•) :=∇(∇ (•)) as the second-order gradient and introduce the first- and second-order stress
tensors P ∶= 𝜕F𝜓 and G ∶= 𝜕∇F𝜓 , respectively.

3 THE ROT-FREE MIXED FORMULATION

This section introduces a finite strain mixed finite element approach, in which, through a rot-free constraint, the displace-
ment and displacement gradient solution variables appear in a decoupled set of variational equations promising increased
computational efficiency. While Section 3.1 discusses the continuous variational setting, in Section 3.2 suitable finite
element interpolations are discussed and the corresponding set of discrete matrix-vector notations are obtained on the
element level. The proposed approaches are complemented by a mathematical analysis of the small strain counterparts
in Sections 3.1.6 and 3.2.5 for the continuous and the discrete setting, respectively.

3.1 Continuous variational framework

In the following it is assumed that the body  has a finite size and is simply connected with a connected essential
boundary ΓD.

3.1.1 Decomposed Lagrange multiplier method

In order to arrive at a formulation, which contains only first order gradients and thus, enables C0 continuous finite
elements, the total elastic potential (8) is reformulated to the following Lagrangian:

𝛱[u,H,𝚲] = 𝛱 int[H] +𝛱ext[u] +𝛱 lag[u,H,𝚲] with (12)

𝛱 lag = ∫
𝚲 ⋅ (H − ∇u) dV . (13)

Here, the internal elastic potential𝛱 int is a functional of the displacement gradient variable H and compatibility with the
displacement u is enforced by the constraint term 𝛱 lag (13). The Lagrange multiplier 𝚲 = −∇g + Rot 𝚽 is decomposed
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according to relations (6) and (7) into a gradient and a rotation. Thus, by making use of the divergence theorem, (13) can
be written as

𝛱 lag = ∫
[∇g ⋅ (∇u − H) +𝚽 ⋅ Rot H] dV . (14)

Note the exclusion of ∇u in the second term of (14), since the scalar product of rot and gradient tensor functions vanishes.
The second term of (14) can be interpreted as constraint term enforcing H to be rot-free, which is a necessary condition
for gradient functions.

Remark 1. In the case of a vanishing nonlocal contribution of the strain energy density (G = 0), 𝚲 can be identi-
fied as the first Piola Kirchhoff stress tensor P and −∇g + Rot 𝚽 can be viewed as corresponding split of the latter.
This can be verified by the Euler–Lagrange equations from variation of (12) according to the Hu–Washizu variational
principle.22

3.1.2 Stabilization for the limit case of vanishing nonlocal contribution

In order to take into account the case in which the nonlocal contribution becomes small, the stabilization term

𝛱 stab = ∫
𝛼

2
(Rot H)2 dV , (15)

is added to (12). Through adding this augmentation term, the problem remains well posed even in the limit case of
vanishing nonlocal contribution and the inf-sup stability condition is fulfilled. The problem (12) is not changed by
the stabilization term since the solution satisfies 𝛿H𝛱 stab = 0. A corresponding mathematical analysis can be found in
Section 3.1.6.

3.1.3 2D variational formulation

In the 2D case d= 2 with definition (4) Rot H simplifies to the vector

Rot H =

[
𝜕X1 H12 − 𝜕X2 H11

𝜕X1 H22 − 𝜕X2 H21

]
. (16)

Thus, in this case the Lagrange multiplier 𝚽 is also vector-valued and fulfills the inf-sup stability condition (cf. (B1) in
Section 3.1.6) without further restrictions with respect to differential operations, namely as element of the Sobolev space
L2 with a fixed mean integral value ∫B𝚽 dV = 0. With (12), (14), and (15) the weak form corresponding to the Lagrangian
𝛱 =𝛱 int +𝛱ext +𝛱 lag +𝛱 stab reads

𝛿u𝛱 = 0 = ∫
∇𝛿u ⋅ ∇g dV +𝛱ext[𝛿u], (17)

𝛿H𝛱 = 0 = ∫
(𝛿H ⋅ P + ∇𝛿H ⋅ G + Rot 𝛿H ⋅𝚽 + 𝛼 Rot 𝛿H ⋅ Rot H − 𝛿H ⋅ ∇g) dV , (18)

𝛿𝚽𝛱 = 0 = ∫
𝛿𝚽 ⋅ Rot H dV , (19)

𝛿g𝛱 = 0 = ∫
∇𝛿g ⋅ (∇u − H) dV . (20)

We seek u and g in the Sobolev space H1 ∶= {𝛿u ∈ L2 ∶ ∇𝛿u ∈ L2} for all 𝛿u, 𝛿g ∈ H1. Moreover, we use Dirichlet
boundary conditions u = u and g = 0 on ΓD with u being the prescribed displacement. Corresponding to the displace-
ment boundary, the tangential direction of the displacement gradient variable is prescribed on ΓD with H ∧ N = ∇u ∧ N,
where N denotes the surface normal vector in the reference configuration. The displacement gradient variable H ∈ H1(2)
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is sought for all 𝛿H ∈ H1(2). Furthermore, the normal direction of the displacement gradient corresponding to the
higher-order essential boundary is prescribed by H N = ∇u N on ΓH .

Remark 2. The equation system (17) through (20) depicts a split of the second-order weak form (11) into a set of first-order
equations. (cf. Reference 19, where this approach was proposed for polyharmonic problems). In the present system of
equations, the displacement u is decoupled from the main problem (18) and constraint Equation (19). The displacements
only appear in the simple Laplace-type Equations (17) and (20). In the following, (17) and (20) are referred to as pre- and
postprocessing step, respectively. This set of equations follows first ideas in Reference 23 in the context of discretizing
Kirchhoff’s equations of thin plate bending by C0 finite elements. Note, that the higher-order tractions r, which were
assumed to be zero could also be applied through extending (18) correspondingly.

3.1.4 3D variational formulation

In the 3D case d= 3, to fulfill the inf-sup condition, the Lagrange multiplier 𝚽 needs to be divergence-free, namely
it needs to be an element of the Sobolev space, that is, 𝚽 ∈ H(Div0)(2) with vanishing boundary trace 𝚽N = 0 on ΓD
(cf. Proposition 7). Thus, in this case, the second divergence-free constraint term

𝛱div = ∫
𝝁 ⋅ Div 𝚽 dV , (21)

is added to (12), where 𝝁 is a vector-valued, second Lagrange multiplier. For 𝝁 the space L2 and a fixed mean integral
value ∫B𝝁 dV = 0 is a suitable choice (cf. (39) and Proposition 3). Similar to the previous case, together with (21), the
weak form corresponding to the Lagrangian 𝛱 =𝛱 int +𝛱ext +𝛱 lag +𝛱 stab +𝛱div reads

𝛿H𝛱 = 0 = ∫
(𝛿H ⋅ P + ∇𝛿H ⋅ G + Rot 𝛿H ⋅𝚽 + 𝛼 Rot 𝛿H ⋅ Rot H − 𝛿H ⋅ ∇g) dV , (22)

𝛿𝚽𝛱 = 0 = ∫
(𝛿𝚽 ⋅ Rot H + Div 𝛿𝚽 ⋅ 𝝁) dV , (23)

𝛿𝝁𝛱 = 0 = ∫
𝛿𝝁 ⋅ Div 𝚽 dV , (24)

and 𝛿u𝛱 and 𝛿g𝛱 according to (17) and (20), and the spaces for u, g, and H unchanged.

3.1.5 Alternative 3D formulation

Starting point for an alternative approach is again the Lagrange multiplier decomposition of Section 3.1.1. However, the
split takes the form 𝚲 = −∇g + 𝚲c, where the variable 𝚲c is sought to have the characteristics of a 3D rotational tensor
field, namely to be divergence-free. Subsequently, the potentials (14) and (21) are modified as

𝛱 lag = ∫
[∇g ⋅ (∇u − H) + 𝚲c ⋅ H] dV , (25)

𝛱div = ∫
𝝁 ⋅ Div 𝚲c dV . (26)

Note, that in the second term of (25) only the rotation part of H is controlled by the Lagrange multiplier 𝚲c. This is due to
the fact that with (26)𝚲c is specifically sought to be a rotation function and thus not having an influence on the divergence
part of H. Proceeding analogously to Section 3.1.4, we obtain the modified weak forms

𝛿H𝛱 = 0 = ∫
(𝛿H ⋅ P + ∇𝛿H ⋅ G + 𝛿H ⋅ 𝚲c + 𝛼 Rot 𝛿H ⋅ Rot H − 𝛿H ⋅ ∇g) dV , (27)

𝛿𝚽𝛱 = 0 = ∫
(𝛿𝚲c ⋅ H + Div 𝛿𝚲c ⋅ 𝝁) dV , (28)
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𝛿𝝁𝛱 = 0 = ∫
𝛿𝝁 ⋅ Div 𝚲c dV , (29)

and 𝛿u𝛱 and 𝛿g𝛱 according to (17) and (20), and the spaces for u, g, and H unchanged. For 𝚲c a zero trace on the
Neumann boundary 𝚲cN = 0 on ΓN is prescribed.

3.1.6 Mathematical analysis of the continuous formulations

In this section we prove the stability of the proposed approach in the small strain framework. Proofs of the propositions,
lemmas, and corollaries of this section are given in Appendix B1. For the mathematical analysis it will be assumed that
the displacements are small and the internal energy in (9) is additively decomposed into a term quadratic in ∇u and a
term quadratic in ∇2u. Let L2(, (Rd)n) denote the space of L2 functions with values in (Rd)n and define the L2-inner
product and the L2-norm for an n-order tensor valued function T ∈ L2(, (Rd)n) by

(𝛿T,T)L2() ∶= ∫
𝛿T ⋅ T dV and ||T||2

L2() ∶= (T,T)L2(). (30)

We furthermore define the space

 ∶= {u ∈ H2 ∶ u|𝜕 = 0 and ∇u N|𝜕 = 0}. (31)

For the left-hand side of (11) we define the bilinear form

a(∇𝛿u,∇u) ∶= (sym(∇𝛿u),C ∶ sym(∇u))L2() + c1(∇2𝛿u,∇2u)L2(), (32)

where C denotes a constant fourth-order elasticity tensor and c1 > 0 a constitutive parameter associated with the
higher order stress response. For a homogeneous boundary 𝜕 = ΓD = ΓH the small-strain gradient elasticity problem
corresponding to (11) simplifies to finding u ∈  for a given volume force f ∈ L2 so that

a(∇𝛿u,∇u) = (𝛿u, f)L2() for all 𝛿u ∈  . (33)

For the mathematical investigation we define the spaces

 ∶= {𝛿g ∈ Hm
0 (; (Rd)1)}, (34)

 ∶= {𝛿H ∈ Hm
0 (; (Rd)2)}, (35)

where Hm
0 (; (Rd)n) denotes the Hm functions with values in (Rd)n satisfying zero Dirichlet boundary conditions on 𝜕.

Furthermore, the definition for the Lagrange multiplier involves the space L2
0(, (Rd)n) which denotes the L2(, (Rd)n)

functions that satisfy ∫T dV = 0 for d= 2, while for d= 3 we define

H0(Div0)(n) ∶= {T ∈ L2(, (Rd)n) ∶ Div T = 0 in  and T N|𝜕 = 0}. (36)

Thus, we define  ∶= {𝛿𝚽 ∈ L2
0(, (Rd)n) if d = 2} or  ∶= {𝛿𝚽 ∈ H0(Div0) if d = 3}.

We then define the bilinear form b ∶  × → R by

b(𝛿H, 𝛿𝚽) ∶= (Rot 𝛿H, 𝛿𝚽)L2().

Define the bilinear form with added stabilization term ã ∶  ×  → R by

ã(H, 𝛿H) ∶= a(H, 𝛿H) + 𝛼(Rot H,Rot 𝛿H)L2().

The small strain-analogon to (18) seeks (H,𝚽) ∈  × for a given g ∈  such that
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ã(H, 𝛿H) + b(𝛿H,𝚽) = (∇g, 𝛿H)L2()
b(H, 𝛿𝚽) = 0, (37)

for all (𝛿H, 𝛿𝚽) ∈  ×. We now show that (37) is stable and robust for c1 → 0. The robustness is proved with respect to
the following norm on  that depends on the parameter c1 that describes the nonlocal contribution,

|||𝛿H||| ∶= (
c1||D𝛿H||2

L2() + 𝛼||Rot 𝛿H||2
L2() + ||C1∕2 sym 𝛿H||2

L2()
)1∕2

.

Note that, if Rot H = 0, then H is a gradient of a function in H1
0 . Therefore, Korn’s inequality implies that for min{c1, 𝛼} > 0

this is in fact a norm.
The following proposition proves the unique existence of solutions to (18) with stabilization in the linear strain

case.

Proposition 1. Let max{𝛼, c1} > c > 0 and max{𝛼, c1} < C < ∞. There exists a unique solution (H,𝚽) ∈  × to the
problem (37).

Remark 3. Note that Proposition 1 remains true, if the stabilization term is not added to the bilinear form, that is,
if ã is replaced by a in (37). This comes from the fact that functions in the kernel of b are rot free and a is coer-
cive on this kernel. However, this is no longer true for the discretization and therefore, we include the stabilization
term.

The following proposition states that the reformulated problem is in fact equivalent to the original
problem.

Proposition 2. If u ∈  is a solution of the original problem (33) then there exists 𝚽 ∈  and g ∈  such that
(u,∇u,𝚽, g) ∈  ×  × ×  solves (17), (37) and (20). On the other hand, if (u,H,𝚽, g) ∈  ×  × ×  solves (17), (37),
and (20), then u solves (33).

3.1.7 Stability of the 3D variational formulation with two Lagrange multipliers

We now show that in the small-strain framework the solution of the 3D variational formulation (22) through (24) coincides
with the solution of the original problem. Define the spaces of the Lagrange multipliers

̃ ∶=
{
𝚽 ∈ H0(Div)(2)

}
(for d = 3) and (38)

 ∶= L2
0(, (R3)1), (39)

where

H0(Div)(n) ∶=
{

T ∈ L2
(, (Rd)n

)
∶ Div T ∈ L2

(, (Rd)n−1
)

and T N|𝜕 = 0
}
. (40)

The small strain analogon to (22), (23), and (24) reads: Find (H,𝚽,𝝁) ∈  × Q̃ × such that

ã(H, 𝛿H) + b(𝛿H,𝚽) = (∇g, 𝛿H)L2(),
b(H, 𝛿𝚽) + (Div 𝛿𝚽,𝝁)L2() = 0,

(𝛿𝝁,Div 𝚽)L2() = 0, (41)

for all (𝛿H, 𝛿𝚽, 𝛿𝝁) ∈  × Q̃ ×.

Proposition 3. Let max{𝛼, c1} > c > 0 and max{𝛼, c1} < C < ∞. There exists a unique solution to (41). Further-
more, if (H,𝚽,𝝁) ∈  × Q̃ × is a solution to (41), then (H,𝚽) ∈  × is a solution to (37). On the other
hand, if (H,𝚽) ∈  × is a solution to (37), then there exists 𝝁 ∈  such that (H,𝚽,𝝁) ∈  × Q̃ × is a
solution to (41).
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The equivalence of Proposition 3 together with Proposition 2 implies that (17), (41), and (20) are equivalent
to (33).

3.1.8 Stability of the alternative 3D variational formulation

In the following we discuss the stability of the small strain analogon to the alternative 3D formulation (27) through (29).
Let H−1(n) denote the dual space of Hm

0 (; (R3)n), that is, the space of all linear and continuous mappings from
Hm

0 (; (R3)n) to R and define

H−1(Div)(n) ∶= {T ∈ H−1(n) ∶ Div T ∈ H−1(n)}, (42)

̂ ∶= {T ∈ H−1(Div)(n) ∶ Div T = 0}. (43)

Further, define the norm

||𝛿𝚲c||̂ ∶= sup
𝛿H∈⧵{0}

⟨𝛿𝚲c, 𝛿H⟩|||𝛿H||| ,

with the duality pairing ⟨•, •⟩ ∶ H−1(2) × Hm
0 (; (R3)2) → R. We consider the problem:

The small strain analogon to (27), (28), and (29) then reads: Find (H,𝚲c) ∈  × ̂ such that

ã(H, 𝛿H) + ⟨𝚲c, 𝛿H⟩ = (∇g, 𝛿H)L2(),⟨𝛿𝚲c,H⟩ = 0, (44)

for all (𝛿H, 𝛿𝚲c) ∈  × ̂.
The following proposition states, that problem (44) is well posed, meaning it has a unique solution, which coincides

with the solution of the original problem.

Proposition 4. There exists a unique solution to (44). Furthermore, problems (44) and (37) are equivalent in the following
sense: If (H,𝚽) ∈  × is a solution to (37), then there exists 𝚲c ∈ ̂ such that (H,𝚲c) ∈  × ̂ is a solution to (44) and
b(𝛿H,𝚽) = ⟨𝚲c, 𝛿H⟩ for all 𝛿H ∈  . If on the other hand (H,𝚲c) ∈  × ̂ is a solution to (44), then there exists 𝚽 ∈  such
that (H,𝚽) ∈  × is a solution to (37).

3.2 Finite element approximations

For the finite element discretization, a partition of  into a set of simplices  =
⋃

eTe is considered, where  is the set
of corresponding element faces. By standard FE procedure, the solution variables and test functions of the continuous
weak forms of Section 3.1 are replaced by piecewise polynomial functions, that are defined in the following subsections.
Moreover, matrix vector representations corresponding to the discretized weak forms are given.

3.2.1 Discretization of the pre- and postprocessing step

In the following, vectors containing nodal degrees of freedom corresponding to the pre- and postprocessing problem (17)
and (20) are denoted by du and dg. We introduce the vector-matrix interpolation operators

uh = Nudu, 𝛿uh = Nu𝛿du, ∇uh = Budu, ∇𝛿uh = Bu𝛿du, (45)

gh = Nudg, 𝛿gh = Nu𝛿dg, ∇gh = Budg, ∇𝛿gh = Bu𝛿dg, (46)
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where Nu and Bu represent suitable finite element interpolation matrices containing Lagrange shape functions and cor-
responding derivatives (cf. Appendix A1). Inserting (45) and (46) and reformulating (17) and (20) leads to the following
matrix equations

𝛿u𝛱
h =

∑
T∈

𝛿dT
u

(
∫T

BT
u Bu dV

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

ku

dg−∫T
NT

u f dV − ∫𝛿T
NT

u t dA
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

rext
u

)
= 0, (47)

𝛿g𝛱
h =

∑
T∈

𝛿dT
g

(
∫T

BT
u Bu dV

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

ku

du−∫T
BT

u NHdH,ext dV
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

rext
H

)
= 0, (48)

where dH,ext contains the nodal degrees of freedom corresponding to Hh computed by the main step. Note, that the pre-
and postprocessing steps are linear and thus, even in the finite deformation regime, no further linearization of (47) and
(48) is necessary.

3.2.2 Discretization of the main step in 2D

For the discretization of the weak form (18), the following matrix interpolation operators are introduced (cf.
Appendix A1):

Hh = NHdH , ∇Hh = BHdH , Rot Hh = RHdH ,

𝛿Hh = NH𝛿dH , ∇𝛿Hh = BH𝛿dH , Rot 𝛿Hh = RH𝛿dH .
(49)

Since the solution variable H is sought in the H1(2) Sobolev space, Lagrange interpolation functions are used in matri-
ces NH and BH . The rotation operator matrix RH is constructed from the suitable components of the gradient operator
with relation (16) (cf. Appendix A1). In the 2D case the Lagrange multiplier 𝚽 ∈ L2 is discretized with interpolation
functions as

𝚽h = NΦdΦ and 𝛿𝚽h = NΦ𝛿dΦ. (50)

As discussed in the mathematical stability analysis of Section 3.2.5 in 2D, any pairing of interpolation functions, which
is stable for the Stokes problem (cf. Reference 24) is a suitable choice for the approximations Hh and 𝚽h. There-
fore, the Mini interpolation scheme P1BH-P1𝚽 and the Taylor–Hood interpolation schemes P2H-P1𝚽 and P3H-P2𝚽
are used (cf. overview in Table 1). Note, that in the Mini interpolation scheme NH consists of linear Lagrange
shape functions corresponding to the vertex nodes of the (linear) P1-triangle and the cubic Lagrange shape func-
tion corresponding to the interior node of the (cubic) P3-triangular element. In this context the latter is also
referred to as volume bubble function (cf. Section 3.2.5, see also Reference 25). The discretization of (49) and (50)
reads

𝛿H𝛱
h =

∑
T∈

𝛿dT
H

(
∫T

𝜕𝜓(dH)
𝜕dH

+ 𝛼RT
HRHdHdV

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

rH(dH)

+ ∫T
RT

HNΦ dV
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

kHΦ

dΦ−∫T
NT

HBudg,ext dV
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

rext
g

)
, (51)

𝛿𝚽𝛱
h =

∑
T∈

𝛿dT
Φ

(
∫T

NT
ΦRH dV

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

kΦH

dH

)
. (52)
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T A B L E 1 Overview of the two-dimensional finite element interpolation schemes used. For each scheme,
the number of interpolation nodes is given in parantheses. The pre- and postprocessing elements are denoted by
P2g,u, P3g,u, and P4g,u. The order of this listing corresponds to the order of the elements appearing in the table

Element name Hh 𝚽h gh∕uh

P1BH-P1𝚽 (MINI) Linear (vertex), cubic (intern.) (4) Linear (3) Quadratic (6)

P2 H-P1𝚽 (Taylor–Hood) Quadratic (6) Linear (3) Cubic (10)

P3H-P2𝚽 (Taylor–Hood) Cubic (10) Quadratic (6) Quadratic (15)

Here, kHΦ = kT
ΦH represent the element submatrices corresponding to the rot-free constraint condition, whereas rext

g
depicts the nodal load vector with dg,ext obtained from the solution of the preprocessing step (47). In general, the strain
energy function 𝜓 is non-linear in Hh and ∇Hh and thus, nonlinear in dH . Therefore, the incremental Newton–Raphson
loadstep solution procedure is used to obtain the solution. This requires the linearization of (51). The linearized problem
then reads

Lin[𝛿H𝛱
h + 𝛿𝚽𝛱h] =

∑
T∈

[
𝛿dH

𝛿dΦ

]T ([
kH kHΦ

kΦH 0

][
ΔdH

ΔdΦ

]
+

[
rH

(
dH

)
+ rext

g

0

])
= 0, (53)

whereΔdH andΔdΦ denote increments of the nodal solution vectors, and dH denotes the nodal solution from the previous
step. The element tangent submatrix kH can be written as

kH =
𝜕rH

(
dH

)
𝜕dH

= ∫T

(
𝜕2𝜓

(
dH

)
𝜕d2

H

+ 𝛼RT
HRH

)
dV , (54)

where the second term consists of the discretization of the rot–rot stabilization term. The integrals ∫T • dV over the
element are evaluated numerically via Gauss quadrature of the reference element.

3.2.3 Discretization of the main step in 3D

In order to arrive at a stable discrete set of equations, in the 3D case the Lagrange multiplier is discretized conforming to
the Sobolev space H(Div) (cf. Section 3.1.6). Therefore, the lowest order Raviart–Thomas interpolation procedure is used
for 𝚽h. By using appropriate interpolation operator matrices, we denote the approximations as

𝚽h = SΦdΦ, Div 𝚽h = DΦdΦ,

𝛿𝚽h = SΦ𝛿dΦ, Div 𝛿𝚽h = DΦ𝛿dΦ,
(55)

where SΦ and DΦ contain the Raviart–Thomas shape functions and their divergence, respectively. Details on the con-
struction of SΦ and DΦ can be found in Appendix A1. Since the second Lagrange multiplier 𝝁h appearing in (23) and (24)
is sought in L2, a piecewise constant approximation is used. We define the interpolation matrix N

𝜇
(cf. Appendix A1) with

𝝁
h = N

𝜇
d
𝜇

and 𝛿𝝁h = N
𝜇
𝛿d

𝜇
. (56)

Note, that since𝝁h is piecewise constant, the corresponding degrees of freedom d
𝜇

may be condensed at the element level.
An overview of the used Lagrange- and Raviart–Thomas interpolation schemes that fulfill the mathematical stability
analysis of Section 3.2.5 can be found in Table 2. Here, for the interpolation of Hh, the matrix NH consists of the linear
Lagrange shape functions corresponding to the four vertex nodes of the (linear) P1-tetrahedron and the cubic Lagrange
shape functions corresponding to the four midface nodes of the (cubic) P3-tetrahedral element. In the mathematical
analysis of Section 3.2.5, the latter are referred to as face bubble functions (see also Reference 19). Analogously to the
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Variable name Interpolation scheme Interpolation type

Hh Linear (vertex), cubic (midface) (8) Lagrange

𝚽h/𝚲h
c Linear in face normal direction (midface) (4) Raviart–Thomas

𝝁
h Constant (internal node) (1) Piecewise constant

uh/gh Quadratic (10) Lagrange

T A B L E 2 Overview of the
three-dimensional finite element
interpolation schemes
(P1FBH-RT0𝚽-P0𝜇 and
P1FBH-RT0𝚲-P0𝜇). For each
scheme, the number of interpolation
nodes is given in parantheses. The
pre- and postprocessing elements
are denoted by P2g,u

discretization procedure discussed in the previous section, with (49), (55), and (56) we arrive at the following linearized
system corresponding to the discretization of (22) through (24)

Lin
[
𝛿H𝛱

h + 𝛿𝚽𝛱h] = ∑
T∈

⎡⎢⎢⎢⎣
𝛿dH

𝛿dΦ

𝛿d
𝜇

⎤⎥⎥⎥⎦
T ⎛⎜⎜⎜⎝

⎡⎢⎢⎢⎣
kH kHΦ 0

kΦH 0 kΦ𝜇

0 k
𝜇Φ 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
ΔdH

ΔdΦ

Δd
𝜇

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
rH

(
dH

)
+ rext

g

0
0

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ = 0. (57)

The element tangent submatrices kΦ𝜇 = kT
𝜇Φ and kHΦ = kT

ΦH , which correspond to the rot-constraint and the
div-constraint, respectively, are given by

kΦ𝜇 = kT
𝜇Φ = ∫T

DT
ΦN

𝜇
dV , (58)

kHΦ = kT
ΦH = ∫T

RT
HSΦ dV . (59)

In the following, the discretization scheme (57) is denoted by P1FBH-RT0𝚽-P0𝜇.

Remark 4. In Reference 19, for a similar discretization the approach following Reference 26 is taken in which the first
Lagrange multiplier 𝚽 is discretized with P0 functions. In a second constraint condition, added to the discrete system
of equations, through discrete Lagrange multipliers 𝜸

h continuity of 𝚽 in normal direction across the element faces is
enforced. While this second constraint is not part of the continuous formulation, the global number of equations is sim-
ilar to those of the proposed approach. For d= 3 the Lagrange multiplier and the additional constraint equation of one
element contribute ndof𝚽 + ndof𝜸h = 9 + 3 ⋅ 4 = 21 equations to the global system, where ndof𝚽 may be condensed at the
element level. Meanwhile, the P1FBH-RT0𝚽-P0𝝁-element counts ndof𝚽 + ndof𝝁 = 3 ⋅ 4 + 3 = 15 corresponding degrees
of freedom, where ndof𝝁 may be condensed at the element level.

3.2.4 3D discretization of the alternative formulation

For the discretization of the alternative approach (27) through (29), the same interpolation operators as in the previous
section are used. Thus, the interpolation of 𝚲c is given by

𝚲h
c = SΦdΛc

, Div 𝚲h
c = DΦdΛc

,

𝛿𝚲h
c = SΦ𝛿dΛc

, Div 𝛿𝚲h
c = DΦ𝛿dΛc

.
(60)

Consequently, the structure of the linearized system of the discretized equations of (27) through (29) is analogous to the
one in the previous section:

Lin
[
𝛿H𝛱

h + 𝛿𝚽𝛱h] = ∑
T∈

⎡⎢⎢⎢⎣
𝛿dH

𝛿dΛc

𝛿d
𝜇

⎤⎥⎥⎥⎦
T ⎛⎜⎜⎜⎝

⎡⎢⎢⎢⎣
kH kHΛc

0

kΛcH 0 kΛc𝜇

0 k
𝜇Λc

0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
ΔdH

ΔdΛc

Δd
𝜇

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
rH

(
dH

)
+ rext

g

0
0

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ = 0. (61)

However, here the tangent submatrix corresponding to the rot-constraint takes the form
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kHΛc
= kT

ΛcH = ∫T
NT

HSΦ dV . (62)

The submatrices kH and kΛc𝜇
= kΦ𝜇 remain unchanged (cf. Section 3.2.3). In the following, the discretization scheme

corresponding to (61) is denoted by P1FBH-RT0𝚲-P0𝜇 (cf. Table 2).

3.2.5 Mathematical analysis of the finite element approximations

In this section we discuss the stability of the finite element approximation schemes discussed in the previous sections.
Proofs of the propositions and lemmas of this section are given in appendix B1.

3.2.6 Stability of the 2D finite element approximations

Let A ≲ B abbreviate that there exists a generic constant C<∞, that does not depend on the critical parameter like the
mesh-size of a discretization or the parameter c1 and 𝛼 defined below, such that A≤CB.

In the case d= 2, any finite element pairing that is stable for the Stokes equations is a suitable choice for the
discretization of (18) and (19). This is proved in the following proposition.

Proposition 5. Let c1 > 0, max{𝛼, c1} > c > 0 and max{𝛼, c1} < C <∞. If h × Qh is a stable finite element pair for the
Stokes equations, then h ×h is a stable pairing for the discretization of (37) for d= 2. Therefore, there exists a unique
solution (Hh,𝚽h) ∈ h ×h of the discretization with

|||H − Hh||| + ||𝚽 −𝚽h||L2()
≲ inf

(𝛿Hh,𝛿𝚽h)∈h×h
|||H − 𝛿Hh||| + ||𝚽 − 𝛿𝚽h||L2(), (63)

where (H,𝚽) ∈  × is the solution to problem (37).

For a simplicial triangulation  of , we introduce the following notation for the space of tensorial piecewise
polynomial functions of degree ≤k:

P(n)
k ∶= Pk

( ; (Rd)(n)
)
. (64)

If T is a vector (n= 1), the corresponding superscript index will be omitted. We denote the discrete spaces corresponding
to the MINI element by

h
M ∶=  ∩ P(2)

1 ⊕ B3( ,R2)(2), (65)

h
M ∶=  ∩ P1. (66)

Here, B3( ,R2)(2) is the space of cubic bubble functions defined on the triangle (cf. Reference 25). The discretization
of (37) then seeks (Hh,𝚽h) ∈ h

M ×h
M such that (37) is solved for all test functions (𝛿Hh, 𝛿𝚽h) ∈ h

M ×h
M. The inf-sup

condition for the Stokes equations (Reference 24, theorem 8.8.1) together with Proposition 5 proves the stability of this dis-
cretization, and therefore, a unique solution exists and the error satisfies (63). The Taylor–Hood finite element subspaces
(cf. Reference 25) are

h
TH ∶=  ∩ P(2)

k+1 and h
TH ∶=  ∩ Pk for k ≥ 1, (67)

and the discrete problem seeks (Hh,𝚽h) ∈ h
TH ×h

TH such that (37) is solved for all (𝛿Hh, 𝛿𝚽h) ∈ h
TH ×h

TH. Again, the
inf-sup condition for the Stokes equations24 together with Proposition 5 proves that this defines a stable discretization. For
k= 1 and k= 2, respectively, the corresponding finite elements are referred to by P2H-P1𝚽 and P3H-P2𝚽 in the following
(Table 1).
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3.2.7 Stability of the 3D finite element approximations

As discussed in Section 3.1.6, for d= 3 the Lagrange multiplier 𝚽 ∈  is required to be divergence free. Thus, the
formulation with an additional Lagrange multiplier from Section 3.1.4 is employed with the following discrete subspaces:

h ∶=  ∩ P(2)
1 ⊕ B3( ,R3)(2), (68)

h ∶= ̃ ∩ RT0( ;R3)(2) and (69)

h ∶=  ∩ P0. (70)

Here, B3( ,R3)denotes the space of cubic face bubble functions vanishing on the element edges. Furthermore, RT0( ;R3)
is the finite element space of Raviart and Thomas, which consists of polynomial functions, which are continuous in nor-
mal direction across the interelement boundarys.27 The discretization of the modified problem (41) seeks (Hh,𝚽h,𝝁h) ∈
h ×h ×h such that (41) is solved for all test functions (𝛿Hh, 𝛿𝚽h, 𝛿𝝁h) ∈ h ×h ×h. This linear problem
corresponds to the P1FBH-RT0𝚽-P0𝝁 discretization of Section 3.2.3.

The following proposition proves the stability and an error estimate for this discretization.

Proposition 6. Let c1 > 0, max{𝛼, c1} > c > 0 and max{𝛼, c1} < C <∞. The discretization of (41) with the above choice of
spaces has a unique solution (Hh,𝚽h,𝝁h) ∈ h ×h ×h satisfying

|||H − Hh||| + ||𝚽 −𝚽h||L2()
≲ inf

(𝛿Hh,𝛿𝚽h)∈h×(h∩)|||H − 𝛿Hh||| + ||𝚽 − 𝛿𝚽h||L2(),

where (H,𝚽) ∈  × is the solution to (37).

3.2.8 Stability of the alternative 3D finite element approximation

This section investigates a discretization of the alternative formulation (44), which is the linear analogon to (27)
through (29), which showed appropriate performance in the numerical experiments.

The space ̂ in (44) is discretized with Q̂ ∩ Q̂h with Q̂h ∶= RT0( ;R3)(2) ∩ H(Div)(2). In particular, those functions
have more smoothness than requested by Q̂, namely they are in H(Div)(2). Therefore, the duality pairing can be replaced
by the L2 product. Moreover, since Div ̂h ⊆ P0, the equation (𝛿𝝁h,Div 𝚲h

c )L2() = 0 for all 𝛿𝝁h ∈ P0 guarantees that a
function𝚲h

c ∈ Q̂h is in fact in Q̂. Thus, the divergence free condition from ̂ can be incorporated via an additional Lagrange
multiplier. In conclusion, the discrete problem for (44) seeks (Hh,𝚲h

c ,𝝁
h) ∈ h × ̂h × ̂h so that

ã(𝛿Hh,Hh) +
(
𝛿Hh,𝚲h

c
)

L2() =
(
𝛿Hh,∇gh)

L2(),(
𝛿𝚲h

c ,Hh)
L2() +

(
Div 𝛿𝚲h

c ,𝝁
h)

L2() = 0,(
𝛿𝝁h,Div 𝚲h

c
)

L2() = 0, (71)

for all (𝛿Hh, 𝛿𝚲h
c , 𝛿𝝁

h) ∈ h × ̂h × ̂h with the modified discrete subspaces

̂h ∶= H(Div)(2) ∩ RT0( ;R3)(2) and (72)

̂h ∶= L2(, (R3)1) ∩ P0 (73)

and h from (68) from the previous section.The discretization of (71) corresponds to the P1FBH-RT0𝚲-P0𝝁 formulation
of Section 3.2.4. Note that 𝝁h can be both identified as Lagrange multiplier enforcing 𝚲h

c to be divergence free and P0
approximation of the displacement.

As mentioned above, since Div ̂h ⊆ P0, the third equation of (71) shows that 𝚲h
c ∈ ̂h ∩ ̂. Therefore, the

discretization (71) is a conforming discretization of (44) in the space h × (̂h ∩ ̂) ⊆  × ̂. Proposition 4 proves the
well-posedness of problem (44). Furthermore, the discretized problem is stable in the numerical experiments of section 4.
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4 NUMERICAL TESTS

In this section, the proposed discretizations are numerically tested. An overview of the considered elements is given in
Table 3. For the implementation, the AceGen/AceFEM software package has been used, which is based on automatic
differentiation. Through construction of the elastic potential containing the approximated solution fields and differenti-
ation with respect to the nodal degrees of freedom on the element level, both the element residual and tangent matrix
are derived (cf. Reference 28). The integrals are evaluated numerically with Gauss integration over the corresponding
reference coordinate space. In Table 3 the used Gauss integration orders are shown for each discretization. The standard
Newton–Raphson load step solution procedure is used for the solution of the nonlinear global system. For the solution of
the linearized system of equations, the PARDISO solver is used.

For the local hyperelastic energy density the Neo Hookean ansatz of Reference 29 is used:

𝜓 loc = 𝜇

2
(I1 − 3) + g(J), (74)

with g(J) = c(J2 − 1) − d ln J − 𝜇 ln J, (75)

and I1 = tr C, J = det F. The coefficients c and d are set to c = 𝜆∕4 and d = 𝜆∕2 (see also Reference 30), where the
parameters 𝜆 and 𝜇 are the Lamé constants which can be computed from the Young’s modulus E and the Poisson’s
ratio 𝜈 by 𝜆 = E𝜈∕((1 + 𝜈)(1 − 2𝜈)) and 𝜇 = E∕(2(1 + 𝜈)). Based thereon, the Cauchy stress tensor can be computed from
𝝈 = J−1P FT where the first Piola–Kirchhoff stress tensor is obtained from P = 𝜕F𝜓 . The nonlocal part of the energy
density is taken from:31

𝜓nloc = c1

2
∇F ⋅ ∇F, (76)

where c1 is a nonlocal elasticity constant. With l =
√

c1∕𝜇, the constant can be scaled to a length unit parameter.10 In the
following numerical examples the elasticity parameters are chosen with E = 500 MPa and 𝜈 = 0.3, unless stated otherwise.
For the 2D analysis, the constitutive model is implemented under the plain strain assumption.

4.1 Unit square with smooth solution

For this test, the domain  is considered to be a 2D unit square with the dimensions 1× 1 mm2 (cf. Figure 1(A)), where
also the element alignment for the initial mesh is depicted. A cross-pattern element patch has been chosen, since a
mesh with a unidirectional element orientation may show inferior convergence results (cf. Reference 32). In order to
construct an exact error measure, the large displacement smooth reference solution u of Reference 18(p. 12) is used. The
reference solution u|𝜕 = 0 and its first-order gradient ∇u|𝜕 = 0 vanishes on the boundary, such that the strong form
of (11) reads

−Div P + Div Div G = f. (77)

T A B L E 3 Overview of applied Gauss integration
schemes. As introduced in Section 3.2 the indices in the
element name refer to the approximated field. Furthermore,
the following abbreviations for the different approximations
hold: P(•): nodal interpolation with Lagrange polynomials
of (•)th order (for (•)≥ 1). P0, piecewise constant
approximation; B, enrichment by volume bubble function;
FB, enrichment by face bubble function; RT0, lowest-order
Raviart–Thomas interpolation

Element name Number of Gauss points AceGen ID

P2g,u (pre,post,2D) 3 35

P3g,u (pre,post,2D) 7 42

P4g,u (pre,post,2D) 12 39

P1BH-P1𝚽 3 35

P2H-P1𝚽 7 42

P3H-P2𝚽 12 39

P2g (pre 3D) 4 18

P2u (post 3D) 5 19

P1FBH-RT0𝚽-P0𝜇 4 18

P1FBH-RT0𝚲-P0𝜇 4 18
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(A) (B)

F I G U R E 1 Convergence rates in the (A) H1-error seminorm and in the (B) H2-error seminorm of the proposed elements compared to
the three field element P2u-P1BH-P1𝚲 of Reference 18. For this study the nonlocal parameter is set to l= 0.1 mm. In subfigure (A) the initial
mesh is depicted

Element name Pre- and postprocessing

P1BH-P1𝚽 P2g,u

P2H-P1𝚽 P3g,u

P3H-P2𝚽 P4g,u

P1FBH-RT0𝚽-P0𝜇 P2g,u

P1FBH-RT0𝚲-P0𝜇 P2g,u

T A B L E 4 Overview of the analyzed finite elements and associated pre- and
postprocessing elements

With (77), the volume load f is computed analytically for each Gauss point and then evaluated through rext
u of the discrete

Equation (47). For each uniform mesh refinement step the error ||∇u − Hh||L2() and ||∇2u − ∇Hh||L2() is measured by
computing the numerical integrals, in which the exact solution and the interpolation of the finite element solution are
evaluated at the Gauss points. The polynomial order of both pre- and postprocessing discretization is k+ 1, where k is the
polynomial order of the Hh interpolation of the main step (cf. Table 4). The elements are compared to the P2u-P1BH-P1𝚲
element of.18 There, following the previously existing mixed approaches (cf. References 16 and 17), the displacement gra-
dient is replaced by H only in the nonlocal energy 𝜓nloc ∶= 𝜓nloc(H) and 𝜓 loc ∶= 𝜓 loc(∇u) remains a functional of u. The
discretization of the P2u-P1BH-P1𝚲 element is in accordance to the naming convention used here (cf. Table 3). Moreover,
the Lagrange multiplier is not additively decomposed and sought in L2. Therefore, the corresponding variational problem
is not decoupled.

4.1.1 Convergence rates

Figure 1 depicts the error in the H1 and the H2 seminorm depending on the element size h. For the convergence study
the nonlocal parameter l= 0.1 mm is chosen and with 𝛼 = 0 the rot-rot stabilization term is switched off. The observed
H1 convergence rates are approximately hk+ 1 for the H1 error and hk for the H2 error, where k is the polynomial order of
Hh. The L2 norm ||Rot Hh||L2() of the constraint term (cf. (52)) is observed to decrease with the same rate as the H2-error.

4.1.2 Influence of the stabilization term

For the results depicted in Figure 2(A), the rot-rot stabilization term is switched on with 𝛼 = 10 N∕mm3L. The
convergence of the L2 error corresponding to the P2H-P1𝚽 element is shown for various nonlocal parameters l. The
approximate convergence rate of h4 is obtained (for this element the pre- and postprocessing polynomial order is
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(A) (B)

F I G U R E 2 Influence of the stabilization parameter: L2 convergence of the P2H-P1𝚽 Taylor–Hood-type element on the unit square
problem (A) for varying l with the fixed stabilization parameter 𝛼 = 10N∕mm3L and (B) for varying stabilization parameter 𝛼 for a fixed
length parameter l= 0.1L

cubic with uh ∈ h ∩ P3, cf. Table 4). The convergence rate h4 is reached even in the limit case of vanishing nonlocal
contribution (l= 0). While the Taylor–Hood-type element P3H-P2𝚽 behaves analogously with an approximate L2 conver-
gence rate of h5, the P1BH-P1𝚽 element experiences a shift from order h3 to h2 as l approaches zero. The tangent matrix of
the element P2u-P1BH-P1𝚲 becomes singular in this case. In Figure 2(B) the convergence behavior of the P2H-P1𝚽 element
depending on the numerical value of 𝛼 is depicted. While it can be observed that numerical values up to 𝛼 = 10 N∕mm3L
do not significantly alter the convergence behavior, a higher value than 𝛼 = 10 N∕mm3L leads to slightly varying results.
This may be due to the fact that in this case the rot-free constraint is dominated more by the stabilization term, which for
high values of 𝛼 can be interpreted as penalty term. Moreover, for higher values of 𝛼 an increase of the condition number
of the global tangent matrix and, for more extreme values, loss of convergence of the Newton-Raphson solution procedure
is observed.

4.1.3 Computing efficiency

In order to compare the computational cost of the finite elements, Figure 3 shows a displacement convergence study at
the point A= (0.5, 0.5) mm. In Figure 3(A) the displacement of the finite element solution relative to the exact solution
uy(0.5, 0.5)=−0.1953 mm is plotted versus the computing time required for both assembly and solution of all iterative
steps of the solution procedure in total at each refinement step. Since the scale of the problem is rather small, multi-
ple simulations are made at each refinement step. The computing times of all simulations for each refinement step are
averaged to take into account variations of the calculating capacity of the computer. Figure 3(B) depicts the average com-
puting time of the elements corresponding to the converged state. The convergence criterion is |Δu| ≤ 0.001 mm and
the corresponding refinement stage is marked by a bullet in Figure 3(A). While for all elements the computing time cor-
responding to the main problem (53) is considered, for element P3H-P2𝚽 the total computing time including pre- and
postprocessing is additionally taken into account (the corresponding plot in Figure 3(B) is marked with an asterisk). It
becomes evident, that even for this small-sized problem, the proposed elements have a computational advantage over the
three-field element P2u-P1BH-P1𝚲. Moreover, the contribution of the pre- and postprocessing step to the total computing
time is relatively small even in the present case of P4u,g elements (cf. Table 4).

4.2 Cook’s membrane problem

The boundary of the Cook’s membrane problem (cf. Figure 4(A)) is decomposed with 𝜕 = ΓD ∪ ΓN = ΓM . On the left
side at (X = 0 mm) the Dirichlet boundary conditions u|ΓD = 0 and H ∧ N|ΓD = 0 hold. On the right-hand side at (X =L,
with L= 48 mm) the surface traction t = (0, 50 N∕mm)T is applied. With 𝜕 = ΓM and ΓH = ∅ no higher-order Dirichlet
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(A) (B)

F I G U R E 3 Computing efficiency: (A) displacements at center point A (cf. Figure 1(A)) normalized by reference value versus average
computing time and (B) computing time corresponding to the converged state. Converged states are market by bullets in (A)

(A) (B) F I G U R E 4 (A) Geometry of the
Cook’s membrane benchmark problem
([length]=mm) and distributed traction
t = 50.00 N/mm. (B) Visualization of the
mesh corresponding to the second
refinement step

boundary conditions are prescribed. The nonlocal parameter is l= 1 mm and the stabilization parameter is 𝛼 = 10 L. The
mesh (cf. Figure 4) is refined uniformly. We denote

⟨𝝈⟩2
e =

||𝝈h||2
L2(e)

Ve
(78)

as the element average stress, where 𝝈
h is the Cauchy Stress obtained by postprocessing of the finite element solution.

4.2.1 Removal of singularities

In order to show the ability to avoid singularities, the gradient elasticity elements are compared to the quadratic local
elasticity element P2u (discretization of (11) with G = 0 and uh ∈ H1

ΓD
∩ P2). For this, the average stress ⟨𝝈⟩e of the element

adjacent to the singularity point B= (0, 44) mm is evaluated. In Figure 5, the element average stress is plotted versus the
global number of degrees of freedom corresponding to each refinement step. It becomes evident, that for an increasing
number of degrees of freedom, the element average stress of the gradient elasticity elements converges similarly toward a
finite value, while the element average stress of the local P2u element increases. This behavior is illustrated in Figure 6, in
which contour plots of the average element stresses are shown for the sixth refinement step (cf. bullet marks in Figure 5).
The enlarged image sections (Figure 6(C),(D)) reveal the strong stress localization of the local formulation compared to
the proposed nonlocal P1BH-P1𝚽 element.
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F I G U R E 5 Uniform mesh refinement: average stress of the element
closest to the singularity point B over global number of degrees of freedom

(A)
(B)

(D)(C)

F I G U R E 6 Nonsmoothed contour plots of the element average stress values ⟨𝝈⟩e (A) for the Pu local displacement element and (B) for
the proposed P1BH − P1𝚽 element. In (C) and (D) enlarged image sections around the stress localization point are shown: no stress
singularity is observed for the nonlocal formulation
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(A) (B)

F I G U R E 7 Convergence rates of the proposed elements in three-dimensional (cf. Table 3)(A) in the L2-error and (B) in the L2 norm||Rot H||L2(). For this study the parameter for the nonlocal energy is set to l= 1 mm

4.3 3D Unit cube with smooth solution

For the investigation of the convergence behavior of the 3D elements the unit square domain is extended to 3D. Here,
 has the dimensions 1× 1× 1 mm3 (cf. Figure 7(A)). The smooth finite strain reference solution of Reference 18
(p. 14) is used and again, with the strong form (77) the right-hand side f is derived analytically. The convergence
of the L2-error is depicted in Figure 7(A). The nonlocal parameter is l= 1 mm and the rot-rot stabilization term is
switched off with 𝛼 = 0. It is observed that both investigated elements converge similarly. From Figure 7(B) it can be
seen, that for both elements the L2-norm | |Rot H| |L2() of the constraint condition decreases approximately with the
order h.

4.4 3D Cook’s problem

In this subsection the 3D Cook’s problem (cf. Figure 8(A)) is considered. Similar to the 2D case of Section 4.2, the boundary
is decomposed with 𝜕 = ΓD ∪ ΓN = ΓM . The essential boundary condition at X = 0 mm reads u|ΓD = 0 and H ∧ N|ΓD = 0.
At X =L= 48 mm the surface load t = (0, 0, 50 MPa) is applied.

4.4.1 Influence of the nonlocal parameter on the displacement response

For a mesh refinement stage corresponding to 5120 elements (cf. Figure 8(B) through (D)), the displacement response
at the corner point A= (48, 20, 60) mm is evaluated for various nonlocal parameters l relative to the length of the geom-
etry L. The compared elements are the proposed P1FBH-RT0𝚽-P0𝝁 and P1FBH-RT0𝚲-P0𝝁 discretizations as well as the
P2u-P2H-P1𝚲 element from Reference 18, which again is based on a non-decoupled approach for the Lagrange mutli-
plier and 𝜓 loc ∶= 𝜓 loc(∇u) remaining a functional of u (cf. explanation in Section 4.1). From Figure 9(A) it can be seen,
that for l/L= 0 the solution of the proposed formulations coincides with the converged solution uz(A)= 21.41 mm of the
local Pu displacement formulation. Note, that in this case for the element P1FBH-RT0𝚲-P0𝝁 (cf. Table 3) a stabilization
parameter 𝛼 = 10 L yields sufficient results, while for the element P1FBH-RT0𝚽-P0𝝁 a higher value 𝛼 = 500 L for the
stabilization parameter is necessary to obtain results that are coinciding with the local converged solution. Moreover,
in this case (l/L= 0) the Newton–Raphson solution procedure fails to converge for the P2u-P2H-P1𝚲 element. Neverthe-
less, for l/L≥ 0.05 mm it can be seen from Figure 9(A), that for the three gradient elasticity elements the displacement
response depending on l/L is similar. The dependency of the displacement response on the ratio l/L can be related to the
modeling of size effects (cf. Reference 4). Similar to the 2D results of Section 4.2, the contour plot of Figure 8(C) also shows
a reduction of the element average Cauchy stress for l= 0.0005 L at the singularity point B= (0, 0, 44) mm compared to
the local element P2u (cf. Figure 8(B)). The computing time, which corresponds to the simulation marked with a bullet
in Figure 9(A) is comparable for both elements, see Figure 9(B). Again, as in the numerical evaluation of the proposed
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F I G U R E 8 Three-dimensional Cook’s problem: (A) geometry description. Non-smoothed ⟨𝝈⟩e contour plots of the (B) local
displacement element P2u and of the P1FBH-RT0𝚲-P0𝜇 element for (C) l= 0.0005L and for (d) l= 0.05L

(A) (B)

F I G U R E 9 Size effect: (A) displacement response of the proposed elements and the P2u-P2H-P1𝚲 element from Reference 18 versus
varying values of nonlocal parameter l relative to the domain size L; (B) comparison of computing time corresponding to the simulation
marked with a bullet in (A). Depicted are results of a mesh refinement stage corresponding to 5120 elements (cf. contour plots Figure 8)

2D formulations (cf. Section 4.1.3) a reduced computing time compared to the nondecoupled P2u-P2H-P1𝚲 element can
be observed.

5 CONCLUSION

A new C0-continuous mixed finite element formulation for finite strain gradient elasticity was introduced. The proposed
approach was based on a split of the constraint term, which enforces compatibility between the mixed variables. As a
result, a set of decoupled variational equations was obtained. In the linear setting, stability of the corresponding contin-
uous formulation was proven. Robustness was shown even in the limit case of a vanishing nonlocal contribution and
corresponding suitable finite element discretizations were introduced both in the 2D and the 3D case. Numerical tests of
the nonlinear finite strain formulation showed appropriate convergence behavior and robustness of the proposed finite
elements. The computing time was compared to the 2D three-field approach of Reference 18 (see also Reference 16) and
a notable cost reduction was shown.
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APPENDIX A. INTERPOLATION MATRICES

In this section we give some notes on the construction of the interpolation matrices used in Section 3.2. The element
shape functions are constructed in the coordinates of the reference triangle and tetrahedron respectively. By means of the
affine transformation from the reference coordinate space to the physical coordinate space, the well-known kinematics
for the gradient operator are given by ∇(•) = J−T∇𝜉(•), where J is the Jacobian matrix and ∇𝜉 denotes the gradient with
respect to the coordinate system of the reference element. Moreover, the kinematic relation of the divergence operator is
given by

Div(•) = 1
det J

Div𝜉(•). (A1)

A.1 Lagrange interpolation matrices
The following relations illustrate the transition from the tensor notation to the matrix notation.

uh =
∑

I
dI

uNI ⇒ uh = Nudu,

Hh =
∑

I
dI

HNI ⇒ Hh = NHdH ,

∇uh =
∑

I
dI

u ⊗ ∇NI ⇒ ∇uh = Budu,

∇Hh =
∑

I
dI

H ⊗ ∇NI ⇒ ∇Hh = BHdH .

Here, the left column represents a representation in tensor notation, where dI
(•) depicts the vector/tensor of degrees of

freedom and NI the Lagrangian shape function corresponding to the I-th element node. In the matrix notation, the solu-
tion variables (e.g., Hh,∇Hh, … ) and associated element-wise collections of nodal degrees of freedom (dH ,du … ) are
considered to be column-matrices while the element-wise interpolation operators (eg. NH ,BH , … ) are matrix quantities.
Moreover, in order to simplify the notation with respect to the assembly procedure (cf. (53),(57) and (61)) they are assumed
to be in the dimension of the global system. The piecewise constant interpolation of the second Lagrange multiplier
variable of Section 3.2 is performed analougously through

𝝁
h = din

𝜇 N𝜇
in ⇒ 𝝁

h = N
𝜇

d
𝜇
,

with N𝜇
in = 1 and the vector din

𝜇 corresponding to the degrees of freedom of the internal node of the element. For the
construction of the rotation operator matrix the following relations are used:

Rot Hh =

[
(∇Hh)121 − (∇Hh)112

(∇Hh)221 − (∇Hh)212.

]
for d = 2 ⇒ Rot Hh = RHdH (A2)

https://doi.org/10.1002/nme.6592
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and similarly for d= 3, the relation

Rot Hh =
⎡⎢⎢⎢⎣
(∇Hh)132 − (∇Hh)123 (∇Hh)113 − (∇Hh)131 (∇Hh)121 − (∇Hh)112

(∇Hh)232 − (∇Hh)223 (∇Hh)213 − (∇Hh)231 (∇Hh)221 − (∇Hh)212

(∇Hh)332 − (∇Hh)323 (∇Hh)313 − (∇Hh)331 (∇Hh)321 − (∇Hh)312

⎤⎥⎥⎥⎦ , (A3)

is used.

A.2 Raviart–Thomas interpolation matrices
Similarly to the preceding explanations, the Raviart–Thomas interpolation matrices can be constructed from the following
relations.

𝚽h =
∑

I
dI
Φ ⊗ΨI ⇒ 𝚽h = SΦdΦ

Div 𝚽h =
∑

I
dI
ΦDiv ΨI ⇒ Div 𝚽h = DΦdΦ

Here, the nodal degrees of freedom dI
Φ correspond to the first moment of the element-surface normal direction of the

solution variable.27 Moreover,ΨI depicts the lowest order Raviart–Thomas shape function in the physical coordinate space
corresponding to the Ith mid-face element node. Opposed to the Lagrange interpolation operators, the Raviart–Thomas
shape functions are additionally mapped via Piola transformation from the reference coordinate space to the physical
coordinate space (for a description on the construction of ΨI see Reference 32).

APPENDIX B. PROOFS

In this section proofs of the propositions and lemmas of the mathematical analysis of Section 3 are given. The proofs
are listed in the order as the corresponding propositions etc. appear in the text.

Proof of Proposition 1. To prove proposition 1 we use the following proposition. ▪

Proposition 7. Let d∈ {2, 3}. If d= 3, let  be contractible. For all c1 and 𝛼 with max{c1, 𝛼} < C <∞ the bilinear form b
satisfies the inf-sup condition

sup
𝛿H∈⧵{0}

b(𝛿H, 𝛿𝚽)L2()|||𝛿H||| ≳ ||𝛿𝚽||L2(), (B1)

for all 𝛿𝚽 ∈ , where the constant hidden in ≳ only depends on the upper bound C of c1 and 𝛼, but not on c1 and 𝛼 itself.

Proof. Let first d= 2. Given some 𝛿H ∈ H1
0(;R2×2), define 𝛿H ∈ H1

0(;Rd×d) by

𝛿Hi,2 ∶= 𝛿Hi,1 and 𝛿Hi,1 ∶= −𝛿Hi,2 for i = 1, 2.

Then rot 𝛿H = div 𝛿H and ||𝛿H||H1() = ||𝛿H||H1(). Since ||| • ||| ≲ || • ||H1() with a constant hidden in ≲ only depending
on the upper bound of c1 and 𝛼, this implies

sup
𝛿H∈⧵{0}

(rot 𝛿H, 𝛿𝚽)L2()|||𝛿H||| ≳ sup
𝛿H∈⧵{0}

(rot 𝛿H, 𝛿𝚽)L2()||𝛿H||H1()

= sup
𝛿H∈⧵{0}

(div 𝛿H, 𝛿𝚽)L2()||𝛿H||H1()
.

The Ladyzhenskaya lemma (compare Reference 33) implies

sup
𝛿H∈⧵{0}

(div 𝛿H, 𝛿𝚽)L2()||𝛿H||H1()
≳ ||𝛿𝚽||L2().
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This proves the assertion for d= 2.
Let now d= 3. Due to (Reference 34, proposition A.1) for each 𝛿𝚽 ∈  there is a 𝜑 ∈  with 𝛿𝚽 = rot 𝜑 and||𝜑||H1() ≤ c||𝛿𝚽||L2() with a constant c<∞. Since ||| • ||| ≲ || • ||H1() as above, we obtain for the choice 𝛿H = 𝜑

sup
𝛿H∈⧵{0}

(rot 𝛿H, 𝛿𝚽)L2()|||𝛿H||| ≳ sup
𝛿H∈⧵{0}

(rot 𝛿H, 𝛿𝚽)L2()||𝛿H||H1()
≥ (rot𝜑, 𝛿𝚽)L2()||𝜑||H1()

≥ 1
c

||𝛿𝚽||2
L2()||𝛿𝚽||L2()

= 1
c
||𝛿𝚽||L2().

This completes the proof. ▪

Proposition 7 is the main ingredient of the following proof of proposition 1.

Proof of Proposition 1. The definition of the norm ||| • ||| implies that ã is continuous and coercive on  with respect to||| • |||. Furthermore, b is continuous with respect to the norm ||| • ||| on and the L2() norm onwith continuity constant
min{𝛼−1, c−1

1 }. The inf-sup condition of b is proved in Proposition 7. Therefore, Brezzi’s splitting theorem35 implies the
unique existence of solutions. ▪

Proof of Proposition 2. Let (u,H,𝚽, g) ∈  ×  × ×  solve (17), (37) and (20). Then b(H, 𝛿𝚽) = 0 for all 𝛿𝚽 ∈  implies
that Rot H = 0. Therefore, there exists some w ∈  such that H = ∇w. Then (20) implies that w = u. For 𝛿u ∈  , it holds
that ∇𝛿u ∈  is an admissible test function in (37). This and Rot ∇𝛿u = 0 leads to

a(∇u,∇𝛿u) = ã(H,∇𝛿u) = ã(H,∇𝛿u) + b(∇𝛿u,𝚽) = (∇g,∇𝛿u)L2().

Together with (17), this proves

a(∇u,∇𝛿u)= 𝛱ext[𝛿u].

Therefore, u solves (33). The other direction follows from this equivalence and the existence of unique solutions to (33)
and (17), (37), and (20). ▪

Proof of Proposition 3. To prove Proposition 3 we need an abstract lemma, which generalizes Brezzi’s splitting lemma35

from a system with one constraint to a mixed system with two constraints. The lemma is also used in the stability analysis
of Proposition 6.

Let  ,, and  be Hilbert spaces with norms || • || , || • ||, and || • || and let a, b, and c be bilinear forms on  ×  ,
 ×,  ×, respectively. We consider the abstract problem: Find (H,𝚽,𝝁) ∈  × × such that

a(H, 𝛿H) + b(𝛿H,𝚽) = (∇g, 𝛿H)L2(),
b(H, 𝛿𝚽) + c(𝛿𝚽,𝝁) = 0,

c(𝚽, 𝛿𝝁) = 0, (B2)

for all (𝛿H, 𝛿𝚽, 𝛿𝝁) ∈  × ×.
The following lemma proves the stability of this system. ▪

Lemma 1 (Brezzi’s splitting Lemma with two conditions). Define the kernels of b and c by Z(B) ∶= {w ∈  ∶
b(w, 𝛿𝚽) = 0 for all 𝛿𝚽 ∈ Z(C)} and Z(C) ∶= {w ∈  ∶ c(w, 𝛿𝝁) = 0 for all 𝛿𝝁 ∈ }. Let a, b and c are continuous and
a be symmetric and coercive on Z(B), i.e., there exists a constant C<∞ such that a(𝛿H, 𝛿H) ≥ C||𝛿H||2 for all 𝛿H ∈ Z(B). If
furthermore

||𝛿𝝁|| ≲ sup
𝛿𝚽∈⧵{0}

c(𝛿𝚽, 𝛿𝝁)||𝛿𝚽|| for all 𝛿𝝁 ∈ ,

||𝛿𝚽|| ≲ sup
𝛿H∈⧵{0}

b(𝛿H, 𝛿𝚽)||𝛿H|| for all 𝛿𝚽 ∈ Z(C),
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then problem (B2) has a unique solution (H,𝚽,𝝁) ∈  × × and it satisfies

||H|| + ||𝚽|| + ||𝝁|| ≲ ||∇g||∗ .

Proof. Define for all (H,𝚽) and (𝛿H, 𝛿𝚽) ∈  ×
ã((H,𝚽), (𝛿H, 𝛿𝚽)) ∶= a(H, 𝛿H) + b(𝛿H,𝚽) + b(H, 𝛿𝚽).

From Brezzi’s splitting lemma35 and the assumptions of Lemma 1 we know that ã satisfies

sup
(𝛿H,𝛿𝚽)∈(×Z(C))⧵{0}

ã((H,𝚽), (𝛿H, 𝛿𝚽))||𝛿H|| + ||𝛿𝚽|| ≳ ||H|| + ||𝚽||,
for all (H,𝚽) ∈  × Z(C). Since ã is symmetric, the inf-sup condition with exchanged components follows as well. Define
the bilinear form

c̃((𝛿H, 𝛿𝚽), 𝛿𝝁) ∶= c(𝛿𝚽, 𝛿𝝁) for all 𝛿H ∈  , 𝛿𝚽 ∈ , 𝛿𝝁 ∈ .

Then the nullspace of the associated operator C̃ is given by

Z(C̃) ∶= {(𝛿H, 𝛿𝚽) ∈  × ∶ c̃((𝛿H, 𝛿𝚽), 𝛿𝝁) = 0 for all 𝛿𝝁 ∈ }
=  × Z(C).

Thus, ã satisfies the inf-sup condition on Z(C̃) and c̃ satisfies an inf-sup condition. An application of Brezzi’s splitting
lemma on ã and c̃ yields the assertion. ▪

We proceed with the proof of Proposition 3.

Proof of Proposition 3. Define the norm

||𝛿𝚽||H(Div) ∶=
(||𝛿𝚽||2

L2() + ||Div 𝛿𝚽||2
L2()

)1∕2
,

on Q̃. Note that for 𝛿𝚽 ∈ H1(2)
0 ⊆ H(Div) it holds that ||𝛿𝚽||H(Div) ≲ ||𝛿𝚽||H1(). Therefore

sup
𝛿𝚽∈Q̃⧵{0}

(Div 𝛿𝚽, 𝛿𝝁)L2()||𝛿𝚽||H(Div)
≥ sup

𝛿𝚽∈H1(2)
0 ⧵{0}

(Div 𝛿𝚽, 𝛿𝝁)L2()||𝛿𝚽||H(Div)

≳ sup
𝛿𝚽∈H1(2)

0 ⧵{0}

(Div 𝛿𝚽, 𝛿𝝁)L2()||𝛿𝚽||H1()
.

The inf-sup condition for the Stokes equations, also known as Ladyzhenskaya lemma,33 proves

sup
𝛿𝚽∈H1(2)

0 ⧵{0}

(Div 𝛿𝚽, 𝛿𝝁)L2()||𝛿𝚽||H1()
≳ ||𝛿𝝁||L2().

This proves the inf-sup condition for the bilinear form (Div •, •)L2() on Q̃ ×. The inf-sup condition for b is
proved in Proposition 7. These two inf-sup conditions together with the continuity of all three involved bilinear
forms and the coercivity of ã as in the proof of proposition 1 together with Lemma 1 yields the unique existence of
solutions of (41).

If (H,𝚽,𝝁) ∈  × Q̃ × is a solution to (41), then Div 𝚽 = 0 and therefore (H,𝚽) ∈  × is a solution
to (37). The other direction of the equivalence follows from this and the unique existence of solutions for
both problems. ▪
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Proof of Proposition 4. The definition of the norm on ̂ implies

sup
𝛿H∈⧵{0}

⟨𝛿𝚲c, 𝛿H⟩|||𝛿H||| = ||𝛿𝚲c||̂,
which is the inf-sup condition of the bilinear form ⟨• , •⟩ in (44). This, the coercivity and continuity of a and the continuity
of b prove together with Brezzi’s splitting lemma the unique existence of solutions.

Let now (H,𝚽) ∈  × be a solution to (37). Then ⟨𝚲c, •⟩ ∶= b(•,𝚽) defines a bounded linear map from  to R.
Moreover, given 𝜑 ∈ C∞

c (), it holds that

⟨Div 𝚲c, 𝜑⟩ ∶= ⟨𝚲c,∇𝜑⟩ = b(∇𝜑,𝚽) = (Rot ∇𝜑,𝚽)L2() = 0.

This proves Div 𝚲c = 0 in the distributional sense and therefore 𝚲c ∈ ̂. The definition of 𝚲c proves the first equation
of (44). The equivalence of (37) with (33) from Proposition 2 implies that H = ∇u. The definition of the divergence
therefore leads for all 𝛿𝚲c ∈ ̂ to

⟨𝛿𝚲c,H⟩ = ⟨𝛿𝚲c,∇u⟩ = ⟨Div 𝛿𝚲c,u⟩ = 0,

which is the second equation of (44). The other direction follows from this equivalence and the unique existence of
solutions to both problems. ▪

Proof of Proposition 5. The proof of Proposition 7 explains how a coordinate change transfers the inf-sup condition of the
Stokes equations to the inf-sup condition for the bilinear form b. These arguments also prove the discrete inf-sup condition

sup
𝛿Hh∈h⧵{0}

(rot 𝛿Hh, 𝛿𝚽h)L2()||𝛿Hh||h

≳ ||𝛿𝚽h||L2().

As in Proposition 1, the bilinear form b is continuous, if 𝛼 > C > 0, and ã is continuous. Furthermore, the stabilization
term in ã guarantees that ã is also coercive with respect to ||| • |||. The unique existence of solutions then follows from
Brezzi’s splitting lemma. The error estimate is a direct consequence of the stability of the discrete and the continuous
problem. ▪

Proof of Proposition 6. The inf-sup condition of (Div •, •)L2() onh ×h is well-known.25 Moreover, since Div h = h,
the kernel reads h ∩. Obviously, ||𝛿𝚽h||L2() = ||𝛿𝚽h||H(Div) for functions in h ∩. This, |||•||| ≲ ||∇ • ||L2() and the
inf-sup condition

sup
𝛿Hh∈h⧵{0}

(rot 𝛿Hh, 𝛿𝚽h)L2()||∇𝛿Hh||L2()
≳ ||𝛿𝚽h||L2() for all 𝛿𝚽h ∈ h ∩,

from Reference 19 prove the inf-sup condition

sup
𝛿Hh∈h⧵{0}

(rot 𝛿Hh, 𝛿𝚽h)L2()|||∇𝛿Hh||| ≳ ||𝛿𝚽h||H(Div) for all 𝛿𝚽h ∈ h ∩.

This and the continuity of ã and b and the coercivity of ã (see also the proofs of proposition 1 and Proposition 5) together
with Lemma 1 proves the unique existence of solutions. The error estimate is a consequence of the stability of the discrete
and the continuous system and the fact that the discrete kernel of (Div •, •)L2() equals h ∩ ⊆ . ▪


