26 research outputs found

    Fluorescent Chemosensors for Anions and Contact Ion Pairs with a Cavity-Based Selectivity

    No full text
    The association of a concave macrocyclic compound to one or multiple fluorophores is an appealing strategy for the design of chemosensors. Indeed, as with biological systems, a cavity-based selectivity can be expected with such fluorescent receptors. Examples of calix[6]arene-based systems using this strategy are rare in the literature, and to our knowledge, no examples of fluorescent receptors that can bind organic contact ion pairs have been reported. This report describes the straightforward synthesis of fluorescent calix[6]arene-based receptors 4a and 4b bearing three pyrenyl subunits and the study of their binding properties toward anions and ammonium salts using different spectroscopies. It was found that receptor 4a exhibits a remarkable selectivity for the sulfate anion in DMSO, enabling its selective sensing by fluorescence spectroscopy. In CDCl3, the receptor is able to bind ammonium ions efficiently only in association with the sulfate anion. Interestingly, this cooperative binding of ammonium sulfate salts was also evidenced in a protic environment. Finally, a cavity-based selectivity in terms of size and shape of the guest was observed with both receptors 4a and 4b, opening interesting perspectives on the elaboration of fluorescent cavity-based systems for the selective sensing of biologically relevant ammonium salts such as neurotransmitters.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Monitoring biomolecule concentrations in tissue using a wearable droplet microfluidic-based sensor

    No full text
    Knowing how biomarker levels vary within biological fluids over time can produce valuable insight into tissue physiology and pathology, and could inform personalised clinical treatment. We describe here a wearable sensor for monitoring biomolecule levels that combines continuous fluid sampling with in situ analysis using wet-chemical assays (with the specific assay interchangeable depending on the target biomolecule). The microfluidic device employs a droplet flow regime to maximise the temporal response of the device, using a screw-driven push-pull peristaltic micropump to robustly produce nanolitre-sized droplets. The fully integrated sensor is contained within a small (palm-sized) footprint, is fully autonomous, and features high measurement frequency (a measurement every few seconds) meaning deviations from steady-state levels are quickly detected. We demonstrate how the sensor can track perturbed glucose and lactate levels in dermal tissue with results in close agreement with standard off-line analysis and consistent with changes in peripheral blood levels
    corecore