1,764 research outputs found

    Polaron and bipolaron dispersion curves in one dimension for intermediate coupling

    Full text link
    Bipolaron energies are calculated as a function of wave vector by a variational method of Gurari appropriate for weak or intermediate coupling strengths, for a model with electron-phonon interactions independent of phonon wave vectors and a short-ranged Coulomb repulsion. It is assumed that the bare electrons have a constant effective mass. A two-parameter trial function is taken for the relative motion of the two electrons in the bipolaron. Energies of bipolarons are compared with those of two single polarons as a function of wave vector for various parameter values. Results for effective masses at the zone center are also obtained. Comparison is made with data of other authors for bipolarons in the Hubbard-Holstein model, which differs mainly from the present model in that it has a tight-binding band structure for the bare electrons.Comment: 11 pages including six figures. Physical Review B, to be publishe

    Interactive decision support in hepatic surgery

    Get PDF
    BACKGROUND: Hepatic surgery is characterized by complicated operations with a significant peri- and postoperative risk for the patient. We developed a web-based, high-granular research database for comprehensive documentation of all relevant variables to evaluate new surgical techniques. METHODS: To integrate this research system into the clinical setting, we designed an interactive decision support component. The objective is to provide relevant information for the surgeon and the patient to assess preoperatively the risk of a specific surgical procedure. Based on five established predictors of patient outcomes, the risk assessment tool searches for similar cases in the database and aggregates the information to estimate the risk for an individual patient. RESULTS: The physician can verify the analysis and exclude manually non-matching cases according to his expertise. The analysis is visualized by means of a Kaplan-Meier plot. To evaluate the decision support component we analyzed data on 165 patients diagnosed with hepatocellular carcinoma (period 1996–2000). The similarity search provides a two-peak distribution indicating there are groups of similar patients and singular cases which are quite different to the average. The results of the risk estimation are consistent with the observed survival data, but must be interpreted with caution because of the limited number of matching reference cases. CONCLUSION: Critical issues for the decision support system are clinical integration, a transparent and reliable knowledge base and user feedback

    Predicting Efavirenz Concentrations in the Brain Tissue of HIV-Infected Individuals and Exploring their Relationship to Neurocognitive Impairment

    Get PDF
    Sparse data exist on the penetration of antiretrovirals into brain tissue. In this work, we present a framework to use efavirenz (EFV) pharmacokinetic (PK) data in plasma, cerebrospinal fluid (CSF), and brain tissue of eight rhesus macaques to predict brain tissue concentrations in HIV-infected individuals. We then perform exposure-response analysis with the model-predicted EFV area under the concentration-time curve (AUC) and neurocognitive scores collected from a group of 24 HIV-infected participants. Adult rhesus macaques were dosed daily with 200 mg EFV (as part of a four-drug regimen) for 10 days. Plasma was collected at 8 time points over 10 days and at necropsy, whereas CSF and brain tissue were collected at necropsy. In the clinical study, data were obtained from one paired plasma and CSF sample of participants prescribed EFV, and neuropsychological test evaluations were administered across 15 domains. PK modeling was performed using ADAPT version 5.0 Biomedical Simulation Resource, Los Angeles, CA) with the iterative two-stage estimation method. An eight-compartment model best described EFV distribution across the plasma, CSF, and brain tissue of rhesus macaques and humans. Model-predicted median brain tissue concentrations in humans were 31 and 8,000 ng/mL, respectively. Model-predicted brain tissue AUC was highly correlated with plasma AUC (γ = 0.99, P 0.05). This analysis provides an approach to estimate PK the brain tissue in order to perform PK/pharmacodynamic analyses at the target site. © 2019 The Authors. Clinical and Translational Science published by Wiley Periodicals, Inc. on behalf of the American Society for Clinical Pharmacology and Therapeutics

    Parallel computation of 3-D soil-structure interaction in time domain with a coupled FEM/SBFEM approach

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10915-011-9551-xThis paper introduces a parallel algorithm for the scaled boundary finite element method (SBFEM). The application code is designed to run on clusters of computers, and it enables the analysis of large-scale soil-structure-interaction problems, where an unbounded domain has to fulfill the radiation condition for wave propagation to infinity. The main focus of the paper is on the mathematical description and numerical implementation of the SBFEM. In particular, we describe in detail the algorithm to compute the acceleration unit impulse response matrices used in the SBFEM as well as the solvers for the Riccati and Lyapunov equations. Finally, two test cases validate the new code, illustrating the numerical accuracy of the results and the parallel performances. © Springer Science+Business Media, LLC 2011.Jose E. Roman and Enrique S. Quintana-Orti were partially supported by the Spanish Ministerio de Ciencia e Innovacion under grants TIN2009-07519, and TIN2008-06570-C04-01, respectively.Schauer, M.; Román Moltó, JE.; Quintana Orti, ES.; Langer, S. (2012). Parallel computation of 3-D soil-structure interaction in time domain with a coupled FEM/SBFEM approach. Journal of Scientific Computing. 52(2):446-467. doi:10.1007/s10915-011-9551-xS446467522Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Croz, J.D., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK User’s Guide. Society for Industrial and Applied Mathematics, Philadelphia (1992)Antes, H., Spyrakos, C.: Soil-structure interaction. In: Beskos, D., Anagnotopoulos, S. (eds.) Computer Analysis and Design of Earthquake Resistant Structures, p. 271. Computational Mechanics Publications, Southampton (1997)Appelö, D., Colonius, T.: A high-order super-grid-scale absorbing layer and its application to linear hyperbolic systems. J. Comput. Phys. 228(11), 4200–4217 (2009)Astley, R.J.: Infinite elements for wave problems: a review of current formulations and a assessment of accuracy. Int. J. Numer. Methods Eng. 49(7), 951–976 (2000)Balay, S., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc users manual. Tech. Rep. ANL-95/11 - Revision 3.1, Argonne National Laboratory (2010)Benner, P.: Contributions to the numerical solution of algebraic Riccati equations and related eigenvalue problems. Dissertation, Fak. f. Mathematik, TU Chemnitz–Zwickau, Chemnitz, FRG (1997)Benner, P.: Numerical solution of special algebraic Riccati equations via an exact line search method. In: Proc. European Control Conf. ECC 97, Paper 786, BELWARE Information Technology, Waterloo (B) (1997)Benner, P., Quintana-Ortí, E.: Solving stable generalized Lyapunov equations with the matrix sign function. Numer. Algorithms 20(1), 75–100 (1999)Benner, P., Byers, R., Quintana-Ortí, E., Quintana-Ortí, G.: Solving algebraic Riccati equations on parallel computers using Newton’s method with exact line search. Parallel Comput. 26(10), 1345–1368 (2000)Benner, P., Quintana-Ortí, E.S., Quintana-Ortí, G.: Solving linear-quadratic optimal control problems on parallel computers. Optim. Methods Softw. 23(6), 879–909 (2008)Bettess, P.: Infinite Elements. Penshaw Press, Sunderland (1992)Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.: ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia (1997)Borsutzky, R.: Braunschweiger Schriften zur Mechanik - Seismic Risk Analysis of Buried Lifelines, vol. 63. Mechanik-Zentrum Technische Universität. Braunschweig (2008)Dongarra, J.J., Whaley, R.C.: LAPACK working note 94: A user’s guide to the BLACS v1.1. Tech. Rep. UT-CS-95-281, Department of Computer Science, University of Tennessee (1995)Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31(139), 629–651 (1977)Granat, R., Kågström, B.: Algorithm 904: The SCASY library – parallel solvers for Sylvester-type matrix equations with applications in condition estimation, part II. ACM Trans. Math. Softw. 37(3), 33:1–33:4 (2010)Guerrero, D., Hernández, V., Román, J.E.: Parallel SLICOT model reduction routines: The Cholesky factor of Grammians. In: Proceedings of the 15th Triennal IFAC World Congress, Barcelona, Spain (2002)Harr, M.E.: Foundations of Theoretical Soil Mechanics. McGraw-Hill, New York (1966)Hilbert, H., Hughes, T., Taylor, R.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Eng. Struct. Dyn. 5, 283 (1977)Kleinman, D.: On an iterative technique for Riccati equation computations. IEEE Trans. Autom. Control AC-13, 114–115 (1968)Lehmann, L.: Wave Propagation in Infinite Domains. Springer, Berlin (2006)Lehmann, L., Langer, S., Clasen, D.: Scaled boundary finite element method for acoustics. J. Comput. Acoust. 14(4), 489–506 (2006)Liao, Z.P., Wong, H.L.: A transmitting boundary for the numerical simulation of elastic wave propagation. Soil Dyn. Earthq. Eng. 3(4), 174–183 (1984)Lysmer, J., Kuhlmeyer, R.L.: Finite dynamic model for infinite media. J. Eng. Mech. 95, 859–875 (1969)Meskouris, K., Hinzen, K.G., Butenweg, C., Mistler, M.: Bauwerke und Erdbeben - Grundlagen - Anwendung - Beispiele. Vieweg Teubner, Wiesbaden (2007)MPI Forum: The message passing interface (MPI) standard (1994). http://www.mcs.anl.gov/mpiNewmark, N.: A method of computation for structural dynamics. J. Eng. Mech. Div. 85, 67 (1959)Petersen, C.: Dynamik der Baukonstruktionen. Vieweg/Sohn Verlagsgesellschaft, Braunschweig (2000)Roberts, J.: Linear model reduction and solution of the algebraic Riccati equation by use of the sign function. Int. J. Control 32, 677–687 (1980)Schauer, M., Lehmann, L.: Large scale simulation with scaled boundary finite element method. Proc. Appl. Math. Mech. 9, 103–106 (2009)Wolf, J.: The Scaled Boundary Finite Element Method. Wiley, Chichester (2003)Wolf, J., Song, C.: Finite-Element Modelling of Unbounded Media. Wiley, Chichester (1996

    Quantum Cryptography

    Full text link
    Quantum cryptography is a new method for secret communications offering the ultimate security assurance of the inviolability of a Law of Nature. In this paper we shall describe the theory of quantum cryptography, its potential relevance and the development of a prototype system at Los Alamos, which utilises the phenomenon of single-photon interference to perform quantum cryptography over an optical fiber communications link.Comment: 36 pages in compressed PostScript format, 10 PostScript figures compressed tar fil

    Insulin resistance in type 1 diabetes: what is ‘double diabetes’ and what are the risks?

    Get PDF
    In this review, we explore the concept of ‘double diabetes’, a combination of type 1 diabetes with features of insulin resistance and type 2 diabetes. After considering whether double diabetes is a useful concept, we discuss potential mechanisms of increased insulin resistance in type 1 diabetes before examining the extent to which double diabetes might increase the risk of cardiovascular disease (CVD). We then go on to consider the proposal that weight gain from intensive insulin regimens may be associated with increased CV risk factors in some patients with type 1 diabetes, and explore the complex relationships between weight gain, insulin resistance, glycaemic control and CV outcome. Important comparisons and contrasts between type 1 diabetes and type 2 diabetes are highlighted in terms of hepatic fat, fat partitioning and lipid profile, and how these may differ between type 1 diabetic patients with and without double diabetes. In so doing, we hope this work will stimulate much-needed research in this area and an improvement in clinical practice

    Cellular development and evolution of the mammalian cerebellum

    Get PDF
    \ua9 2023, The Author(s).The expansion of the neocortex, a hallmark of mammalian evolution 1,2, was accompanied by an increase in cerebellar neuron numbers 3. However, little is known about the evolution of the cellular programmes underlying the development of the cerebellum in mammals. In this study we generated single-nucleus RNA-sequencing data for around 400,000 cells to trace the development of the cerebellum from early neurogenesis to adulthood in human, mouse and the marsupial opossum. We established a consensus classification of the cellular diversity in the developing mammalian cerebellum and validated it by spatial mapping in the fetal human cerebellum. Our cross-species analyses revealed largely conserved developmental dynamics of cell-type generation, except for Purkinje cells, for which we observed an expansion of early-born subtypes in the human lineage. Global transcriptome profiles, conserved cell-state markers and gene-expression trajectories across neuronal differentiation show that cerebellar cell-type-defining programmes have been overall preserved for at least 160 million years. However, we also identified many orthologous genes that gained or lost expression in cerebellar neural cell types in one of the species or evolved new expression trajectories during neuronal differentiation, indicating widespread gene repurposing at the cell-type level. In sum, our study unveils shared and lineage-specific gene-expression programmes governing the development of cerebellar cells and expands our understanding of mammalian brain evolution

    Quantum mechanics: Myths and facts

    Get PDF
    A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of "myths", that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM or that QFT is a theory of particles, as well as myths on black-hole entropy. The fact is that the existence of various theoretical and interpretational ambiguities underlying these myths does not yet allow us to accept them as proven facts. I review the main arguments and counterarguments lying behind these myths and conclude that QM is still a not-yet-completely-understood theory open to further fundamental research.Comment: 51 pages, pedagogic review, revised, new references, to appear in Found. Phy

    Similarity, precedent and argument from analogy

    Get PDF
    In this paper, it is shown (1) that there are two schemes for argument from analogy that seem to be competitors but are not, (2) how one of them is based on a distinctive type of similarity premise, (3) how to analyze the notion of similarity using story schemes illustrated by some cases, (4) how arguments from precedent are based on arguments from analogy, and in many instances arguments from classification, and (5) that when similarity is defined by means of episode schemes, we can get a clearer idea of how it integrates with the use of argument from classification and argument from precedent in case-based reasoning by using a dialogue structure
    • …
    corecore