111 research outputs found

    Endoglin is an important mediator in the final common pathway of chronic kidney disease to end-stage renal disease

    Get PDF
    Chronic kidney disease (CKD) is a slow-developing, progressive deterioration of renal function. The final common pathway in the pathophysiology of CKD involves glomerular sclerosis, tubular atrophy and interstitial fibrosis. Transforming growth factor-beta (TGF-beta) stimulates the differentiation of fibroblasts towards myofibroblasts and the production of extracellular matrix (ECM) molecules, and thereby interstitial fibrosis. It has been shown that endoglin (ENG, CD105), primarily expressed in endothelial cells and fibroblasts, can function as a co-receptor of TGF signaling. In several human organs, endoglin tends to be upregulated when chronic damage and fibrosis is present. We hypothesize that endoglin is upregulated in renal interstitial fibrosis and plays a role in the progression of CKD. We first measured renal endoglin expression in biopsy samples obtained from patients with different types of CKD, i.e., IgA nephropathy, focal segmental glomerulosclerosis (FSGS), diabetic nephropathy (DN) and patients with chronic allograft dysfunction (CAD). We showed that endoglin is upregulated in CAD patients (p Immunopathology of vascular and renal diseases and of organ and celltransplantationIP1

    The VEGF-A inhibitor sFLT-1 improves renal function by reducing endothelial activation and inflammation in a mouse model of type 1 diabetes

    Get PDF
    Immunopathology of vascular and renal diseases and of organ and celltransplantatio

    Endothelial endothelin receptor a expression is associated with podocyte injury and oxidative stress in patients with focal segmental glomerulosclerosis

    Get PDF
    Introduction: The podocyte is thought to be the mainly affected cell type in focal segmental glomerulosclerosis (FSGS). However, recent studies have also indicated a role for glomerular endothelial cells and podocyte-endothelial crosstalk in FSGS development. An experimental model for podocyte injury showed that increased endothelin-1 (ET-1) signaling between podocytes and endothelial cells induces endothelial oxidative stress and subsequent podocyte loss. In the current study, we investigated endothelial endothelin receptor A (ETAR) expression in patients with FSGS and its association with podocyte injury and glomerular oxidative stress.Methods: We selected 39 biopsy samples of patients with FSGS and 8 healthy control subjects, and stained them for ETAR, nephrin and 8-oxo-guanine, a DNA lesion caused by oxidative damage. Glomeruli with ETAR-positive endothelium and with nephrin loss were scored, and the 8-oxo-guanine-positive glomerular area was measured.Results: The mean percentage of glomeruli with ETAR-positive endothelial cells in patients with FSGS was higher compared to that in healthy control subjects (52% vs. 7%; P < 0.001). The presence of glomerular ETAR-positive endothelium was strongly associated with nephrin loss both on the biopsy level (rho = 0.47; P < 0.01), as on the level of individual glomeruli (odds ratio = 2.0; P < 0.001). Moreover, glomeruli with ETAR-positive endothelium showed more 8-oxo-guanine-positive staining (1.9% vs. 2.4%; P = 0.037). Finally, 8-oxo-guanine positivity in glomeruli was associated with increased levels of proteinuria.Conclusion: Taking together our findings, we show that ETAR is increased in glomerular endothelial cells of patients with FSGS and associated with podocyte damage and glomerular oxidative stress. These findings support the hypothesis that ET-1 signaling in glomerular endothelial cells contributes to disease development in patients with FSGS

    The TGF-β/Smad Repressor TG-Interacting Factor 1 (TGIF1) Plays a Role in Radiation-Induced Intestinal Injury Independently of a Smad Signaling Pathway

    Get PDF
    Despite advances in radiation delivery protocols, exposure of normal tissues during the course of radiation therapy remains a limiting factor of cancer treatment. If the canonical TGF-β/Smad pathway has been extensively studied and implicated in the development of radiation damage in various organs, the precise modalities of its activation following radiation exposure remain elusive. In the present study, we hypothesized that TGF-β1 signaling and target genes expression may depend on radiation-induced modifications in Smad transcriptional co-repressors/inhibitors expressions (TGIF1, SnoN, Ski and Smad7). In endothelial cells (HUVECs) and in a model of experimental radiation enteropathy in mice, radiation exposure increases expression of TGF-β/Smad pathway and of its target gene PAI-1, together with the overexpression of Smad co-repressor TGIF1. In mice, TGIF1 deficiency is not associated with changes in the expression of radiation-induced TGF-β pathway-related transcripts following localized small intestinal irradiation. In HUVECs, TGIF1 overexpression or silencing has no influence either on the radiation-induced Smad activation or the Smad3-dependent PAI-1 overexpression. However, TGIF1 genetic deficiency sensitizes mice to radiation-induced intestinal damage after total body or localized small intestinal radiation exposure, demonstrating that TGIF1 plays a role in radiation-induced intestinal injury. In conclusion, the TGF-β/Smad co-repressor TGIF1 plays a role in radiation-induced normal tissue damage by a Smad-independent mechanism

    Identification of serum angiopoietin-2 as a biomarker for clinical outcome of colorectal cancer patients treated with bevacizumab-containing therapy

    Get PDF
    BACKGROUND: The combination of chemotherapy with the vascular endothelial growth factor (VEGF) antibody bevacizumab is a standard of care in advanced colorectal cancer (CRC). However, biomarkers predicting outcome of bevacizumab-containing treatment are lacking. As angiopoietin-2 (Ang-2) is a key regulator of vascular remodelling in concert with VEGF, we investigated its role as a biomarker in metastatic CRC. METHODS: Serum Ang-2 levels were measured in 33 healthy volunteers and 90 patients with CRC. Of these, 34 had metastatic disease and received bevacizumab-containing therapy. To determine the tissue of origin of Ang-2, quantitative real-time PCR was performed on microdissected cryosections of human CRC and in a murine xenograft model of CRC using species-specific amplification. RESULTS: Ang-2 originated from the stromal compartment of CRC tissues. Serum Ang-2 levels were significantly elevated in patients with metastatic CRC compared with healthy controls. Amongst patients receiving bevacizumab-containing treatment, low pre-therapeutic serum Ang-2 levels were associated with a significant better response rate (82 vs 31%; P<0.01), a prolonged median progression-free survival (14.1 vs 8.5 months; P<0.01) and a reduction of 91% in the hazard of death (P<0.05). CONCLUSION: Serum Ang-2 is a candidate biomarker for outcome of patients with metastatic CRC treated with bevacizumab-containing therapy, and it should be further validated to customise combined chemotherapeutic and anti-angiogenic treatment. British Journal of Cancer (2010) 103, 1407-1414. doi: 10.1038/sj.bjc.6605925 www.bjcancer.com Published online 5 October 2010 (C) 2010 Cancer Research U

    Lipocalin-7 Is a Matricellular Regulator of Angiogenesis

    Get PDF
    Matricellular proteins are extracellular regulators of cellular adhesion, signaling and performing a variety of physiological behaviors such as proliferation, migration and differentiation. Within vascular microenvironments, matricellular proteins exert both positive and negative regulatory cues to vascular endothelium. The relative balance of these matricellular cues is believed to be critical for vascular homeostasis, angiogenesis activation or angiogenesis resolution. However, our knowledge of matricellular proteins within vascular microenvironments and the mechanisms by which these proteins impact vascular function remain largely undefined. The matricellular protein lipocalin-7 (LCN7) is found throughout vascular microenvironments, and circumstantial evidence suggests that LCN7 may be an important regulator of angiogenesis. Therefore, we hypothesized that LCN7 may be an important regulator of vascular function.To test this hypothesis, we examined the effect of LCN7 overexpression, recombinant protein and gene knockdown in a series of in vitro and in vivo models of angiogenesis. We found that overexpression of LCN7 in MB114 and SVEC murine endothelial cell lines or administration of highly purified recombinant LCN7 protein increased endothelial cell invasion. Similarly, LCN7 increased angiogenic sprouting from quiescent endothelial cell monolayers and ex vivo aortic rings. Moreover, LCN7 increased endothelial cell sensitivity to TGF-β but did not affect sensitivity to other pro-angiogenic growth factors including bFGF and VEGF. Finally, morpholino based knockdown of LCN7 in zebrafish embryos specifically inhibited angiogenic sprouting but did not affect vasculogenesis within injected embryos.No functional analysis has previously been performed to elucidate the function of LCN7 in vascular or other cellular processes. Collectively, our results show for the first time that LCN7 is an important pro-angiogenic matricellular protein of vascular microenvironments

    Opposing Effects of the Angiopoietins on the Thrombin-Induced Permeability of Human Pulmonary Microvascular Endothelial Cells

    Get PDF
    BACKGROUND: Angiopoietin-2 (Ang-2) is associated with lung injury in ALI/ARDS. As endothelial activation by thrombin plays a role in the permeability of acute lung injury and Ang-2 may modulate the kinetics of thrombin-induced permeability by impairing the organization of vascular endothelial (VE-)cadherin, and affecting small Rho GTPases in human pulmonary microvascular endothelial cells (HPMVECs), we hypothesized that Ang-2 acts as a sensitizer of thrombin-induced hyperpermeability of HPMVECs, opposed by Ang-1. METHODOLOGY/PRINCIPAL FINDINGS: Permeability was assessed by measuring macromolecule passage and transendothelial electrical resistance (TEER). Angiopoietins did not affect basal permeability. Nevertheless, they had opposing effects on the thrombin-induced permeability, in particular in the initial phase. Ang-2 enhanced the initial permeability increase (passage, P = 0.010; TEER, P = 0.021) in parallel with impairment of VE-cadherin organization without affecting VE-cadherin Tyr685 phosphorylation or increasing RhoA activity. Ang-2 also increased intercellular gap formation. Ang-1 preincubation increased Rac1 activity, enforced the VE-cadherin organization, reduced the initial thrombin-induced permeability (TEER, P = 0.027), while Rac1 activity simultaneously normalized, and reduced RhoA activity at 15 min thrombin exposure (P = 0.039), but not at earlier time points. The simultaneous presence of Ang-2 largely prevented the effect of Ang-1 on TEER and macromolecule passage. CONCLUSIONS/SIGNIFICANCE: Ang-1 attenuated thrombin-induced permeability, which involved initial Rac1 activation-enforced cell-cell junctions, and later RhoA inhibition. In addition to antagonizing Ang-1, Ang-2 had also a direct effect itself. Ang-2 sensitized the initial thrombin-induced permeability accompanied by destabilization of VE-cadherin junctions and increased gap formation, in the absence of increased RhoA activity

    Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension.

    Get PDF
    Genetic evidence implicates the loss of bone morphogenetic protein type II receptor (BMPR-II) signaling in the endothelium as an initiating factor in pulmonary arterial hypertension (PAH). However, selective targeting of this signaling pathway using BMP ligands has not yet been explored as a therapeutic strategy. Here, we identify BMP9 as the preferred ligand for preventing apoptosis and enhancing monolayer integrity in both pulmonary arterial endothelial cells and blood outgrowth endothelial cells from subjects with PAH who bear mutations in the gene encoding BMPR-II, BMPR2. Mice bearing a heterozygous knock-in allele of a human BMPR2 mutation, R899X, which we generated as an animal model of PAH caused by BMPR-II deficiency, spontaneously developed PAH. Administration of BMP9 reversed established PAH in these mice, as well as in two other experimental PAH models, in which PAH develops in response to either monocrotaline or VEGF receptor inhibition combined with chronic hypoxia. These results demonstrate the promise of direct enhancement of endothelial BMP signaling as a new therapeutic strategy for PAH

    Radiotherapy Suppresses Angiogenesis in Mice through TGF-βRI/ALK5-Dependent Inhibition of Endothelial Cell Sprouting

    Get PDF
    BACKGROUND: Radiotherapy is widely used to treat cancer. While rapidly dividing cancer cells are naturally considered the main target of radiotherapy, emerging evidence indicates that radiotherapy also affects endothelial cell functions, and possibly also their angiogenic capacity. In spite of its clinical relevance, such putative anti-angiogenic effect of radiotherapy has not been thoroughly characterized. We have investigated the effect of ionizing radiation on angiogenesis using in vivo, ex vivo and in vitro experimental models in combination with genetic and pharmacological interventions. PRINCIPAL FINDINGS: Here we show that high doses ionizing radiation locally suppressed VEGF- and FGF-2-induced Matrigel plug angiogenesis in mice in vivo and prevented endothelial cell sprouting from mouse aortic rings following in vivo or ex vivo irradiation. Quiescent human endothelial cells exposed to ionizing radiation in vitro resisted apoptosis, demonstrated reduced sprouting, migration and proliferation capacities, showed enhanced adhesion to matrix proteins, and underwent premature senescence. Irradiation induced the expression of P53 and P21 proteins in endothelial cells, but p53 or p21 deficiency and P21 silencing did not prevent radiation-induced inhibition of sprouting or proliferation. Radiation induced Smad-2 phosphorylation in skin in vivo and in endothelial cells in vitro. Inhibition of the TGF-beta type I receptor ALK5 rescued deficient endothelial cell sprouting and migration but not proliferation in vitro and restored defective Matrigel plug angiogenesis in irradiated mice in vivo. ALK5 inhibition, however, did not rescue deficient proliferation. Notch signaling, known to hinder angiogenesis, was activated by radiation but its inhibition, alone or in combination with ALK5 inhibition, did not rescue suppressed proliferation. CONCLUSIONS: These results demonstrate that irradiation of quiescent endothelial cells suppresses subsequent angiogenesis and that ALK5 is a critical mediator of this suppression. These results extend our understanding of radiotherapy-induced endothelial dysfunctions, relevant to both therapeutic and unwanted effects of radiotherapy

    BMP-2/6 Heterodimer Is More Effective than BMP-2 or BMP-6 Homodimers as Inductor of Differentiation of Human Embryonic Stem Cells

    Get PDF
    Bone Morphogenetic Protein (BMP) signaling pathways are involved in differentiation of stem cells into diverse cell types, and thus BMPs can be used as main guidance molecules for in vitro differentiation of human stem cells.We have analyzed the ability for inducing differentiation of the heterodimer BMP-2/BMP-6 (BMP-2/6) compared to the homodimers BMP-2 or BMP-6, using human embryonic stem (hES) cells H9 as model system. When incubated in a medium with high concentration of basic fibroblastic growth factor (FGF2), 100 ng/ml of human recombinant BMPs induced morphological changes and differentiation of hES cells in 24 to 48 hours. After 5 days, expression of differentiation markers was induced and quantified by quantitative PCR (qPCR) and flow cytometry. BMP-2/6 exhibited stronger activity for the induction of the expression of trophectodermal (CDX2) and endodermal (SOX17, GATA4, AFP) markers than BMP-2 or BMP-6 homodimers. BMP-2/6 also induced the expression of BMPR2 gene more effectively than BMP-2 or BMP-6 when used at the same concentration and time. Moreover, the percentage of cells expressing the surface endodermal marker CXCR4 was also increased for the heterodimer when compared to both homodimers. BMP-2/6 was a more potent activator of Smad-dependent (SMAD1/5) and Smad-independent signaling (mitogen-activated protein kinases ERK and p38) than BMP-2 and BMP-6, and the activation of these pathways might play a role in its increased potency for inducing hES cell differentiation.Therefore, we conclude that BMP-2/6 is more potent than BMP-2 or BMP-6 for inducing differentiation of hES cells, and it can be used as a more powerful substitute of these BMPs in in vitro differentiation guidance
    corecore