23 research outputs found

    Plasticity of neuropeptide Y in the dentate gyrus alter seizures, and its relevance to seizure-induced neurogenesis

    No full text
    In summary, NPY is clearly an important peptide in the adult rat dentate gyrus because it has the potential to influence synaptic transmission and neurogenesis. It may even have other functions, as yet undiscovered, mediated by glia or vasculature. The remarkable plasticity of NPY puts it in a position to allow dentate gyrus function to be modified in a changing environment. The importance of this plasticity in the context of epilepsy cannot be emphasized enough. It could help explain a range of observations about epilepsy that currently is poorly understood. For example, rapid increases in NPY could mediate postictal depression, the period of depression that can last for several hours after generalized seizures. It may mediate the "priming effect," which is a reduction in seizure threshold following an initial period of seizures. Finally, it could contribute to the resistance of dentate granule cells to degeneration after seizures. However, despite the focus in this review on seizure-induced changes, the changes described here also appear to occur after other types of manipulations, which considerably broadens the scope of NPY's role in the brai

    A companion to the preclinical common data elements for physiologic data in rodent epilepsy models. A report of the TASK3 Physiology Working Group of the ILAE/AES Joint Translational Task Force

    Get PDF
    The International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force created the TASK3 working groups to create common data elements (CDEs) for various aspects of preclinical epilepsy research studies, which could help improve standardization of experimental designs. This article concerns the parameters that can be measured to assess the physiologic condition of the animals that are used to study rodent models of epilepsy. Here we discuss CDEs for physiologic parameters measured in adult rats and mice such as general health status, temperature, cardiac and respiratory function, and blood constituents. We provide detailed CDE tables and case report forms (CRFs), and with this companion manuscript we discuss the monitoring of different aspects of physiology of the animals. The CDEs, CRFs, and companion paper are available to all researchers, and their use will benefit the harmonization and comparability of translational preclinical epilepsy research. The ultimate hope is to facilitate the development of biomarkers and new treatments for epilepsy

    Seizures preferentially stimulate proliferation of radial glia-like astrocytes in the adult dentate gyrus: functional and immunocytochemical analysis

    No full text
    Kainate-induced seizures increase hippocampal neurogenesis. Glial fibrillary acidic protein-positive astrocytes with radial processes in the dentate gyrus share many of the characteristics of radial glia and appear to act as precursor cells for adult dentate neurogenesis. Using the chemoconvulsant kainate and transgenic mice with human glial-fibrillary acidic protein (hGFAP) promoter-controlled enhanced green fluorescent protein (EGFP) expression, we examined the proliferation, morphology and electrophysiological properties of astrocytes in the neurogenic subgranular zone of the dentate gyrus in control animals and upon the induction of seizure-induced cell proliferation, three days post-kainate. EGFP-positive cells with and without radial processes could easily be distinguished. Kainate treatment caused a significant increase in the total number of proliferating EGFP-positive cells, particularly a tenfold elevation in the number of proliferating radial glia-like astrocytes, and also caused a preferential shift in the dividing cell population towards cells expressing EGFP. Immunohistochemical analysis revealed a surprisingly low proportion of cells coexpressing the astroglial marker S100? and EGFP. Kainate increased the number of EGFP-positive, S100?-positive and S100?-positive–EGFP-positive astrocytes in the subgranular zone. We also report a subset of faintly EGFP-positive cells expressing markers of early neuronal differentiation. Patch-clamp analysis revealed the presence of three functionally different populations of EGFP-positive cells in both kainate and control tissue. We conclude that there is an early increase in proliferating radial glia-like astrocytes in the dentate after kainate-induced seizures, consistent with a recruitment of precursors for seizure-induced neurogenesis
    corecore