1,171 research outputs found
Mode regularization of the susy sphaleron and kink: zero modes and discrete gauge symmetry
To obtain the one-loop corrections to the mass of a kink by mode
regularization, one may take one-half the result for the mass of a widely
separated kink-antikink (or sphaleron) system, where the two bosonic zero modes
count as two degrees of freedom, but the two fermionic zero modes as only one
degree of freedom in the sums over modes. For a single kink, there is one
bosonic zero mode degree of freedom, but it is necessary to average over four
sets of fermionic boundary conditions in order (i) to preserve the fermionic
Z gauge invariance , (ii) to satisfy the basic principle of
mode regularization that the boundary conditions in the trivial and the kink
sector should be the same, (iii) in order that the energy stored at the
boundaries cancels and (iv) to avoid obtaining a finite, uniformly distributed
energy which would violate cluster decomposition. The average number of
fermionic zero-energy degrees of freedom in the presence of the kink is then
indeed 1/2. For boundary conditions leading to only one fermionic zero-energy
solution, the Z gauge invariance identifies two seemingly distinct `vacua'
as the same physical ground state, and the single fermionic zero-energy
solution does not correspond to a degree of freedom. Other boundary conditions
lead to two spatially separated solutions, corresponding to
one (spatially delocalized) degree of freedom. This nonlocality is consistent
with the principle of cluster decomposition for correlators of observables.Comment: 32 pages, 5 figure
The CMS Event Builder
The data acquisition system of the CMS experiment at the Large Hadron
Collider will employ an event builder which will combine data from about 500
data sources into full events at an aggregate throughput of 100 GByte/s.
Several architectures and switch technologies have been evaluated for the DAQ
Technical Design Report by measurements with test benches and by simulation.
This paper describes studies of an EVB test-bench based on 64 PCs acting as
data sources and data consumers and employing both Gigabit Ethernet and Myrinet
technologies as the interconnect. In the case of Ethernet, protocols based on
Layer-2 frames and on TCP/IP are evaluated. Results from ongoing studies,
including measurements on throughput and scaling are presented.
The architecture of the baseline CMS event builder will be outlined. The
event builder is organised into two stages with intelligent buffers in between.
The first stage contains 64 switches performing a first level of data
concentration by building super-fragments from fragments of 8 data sources. The
second stage combines the 64 super-fragments into full events. This
architecture allows installation of the second stage of the event builder in
steps, with the overall throughput scaling linearly with the number of switches
in the second stage. Possible implementations of the components of the event
builder are discussed and the expected performance of the full event builder is
outlined.Comment: Conference CHEP0
Predicting the public health benefit of vaccinating cattle against Escherichia coli O157
Identifying the major sources of risk in disease transmission is key to designing effective controls. However, understanding of transmission dynamics across species boundaries is typically poor, making the design and evaluation of controls particularly challenging for zoonotic pathogens. One such global pathogen is Escherichia coli O157, which causes a serious and sometimes fatal gastrointestinal illness. Cattle are the main reservoir for E. coli O157, and vaccines for cattle now exist. However, adoption of vaccines is being delayed by conflicting responsibilities of veterinary and public health agencies, economic drivers, and because clinical trials cannot easily test interventions across species boundaries, lack of information on the public health benefits. Here, we examine transmission risk across the cattle–human species boundary and show three key results. First, supershedding of the pathogen by cattle is associated with the genetic marker stx2. Second, by quantifying the link between shedding density in cattle and human risk, we show that only the relatively rare supershedding events contribute significantly to human risk. Third, we show that this finding has profound consequences for the public health benefits of the cattle vaccine. A naïve evaluation based on efficacy in cattle would suggest a 50% reduction in risk; however, because the vaccine targets the major source of human risk, we predict a reduction in human cases of nearly 85%. By accounting for nonlinearities in transmission across the human–animal interface, we show that adoption of these vaccines by the livestock industry could prevent substantial numbers of human E. coli O157 cases
Measurements of Flavour Dependent Fragmentation Functions in Z^0 -> qq(bar) Events
Fragmentation functions for charged particles in Z -> qq(bar) events have
been measured for bottom (b), charm (c) and light (uds) quarks as well as for
all flavours together. The results are based on data recorded between 1990 and
1995 using the OPAL detector at LEP. Event samples with different flavour
compositions were formed using reconstructed D* mesons and secondary vertices.
The \xi_p = ln(1/x_E) distributions and the position of their maxima \xi_max
are also presented separately for uds, c and b quark events. The fragmentation
function for b quarks is significantly softer than for uds quarks.Comment: 29 pages, LaTeX, 5 eps figures (and colour figs) included, submitted
to Eur. Phys. J.
Determination of alpha_s using Jet Rates at LEP with the OPAL detector
Hadronic events produced in e+e- collisions by the LEP collider and recorded
by the OPAL detector were used to form distributions based on the number of
reconstructed jets. The data were collected between 1995 and 2000 and
correspond to energies of 91 GeV, 130-136 GeV and 161-209 GeV. The jet rates
were determined using four different jet-finding algorithms (Cone, JADE, Durham
and Cambridge). The differential two-jet rate and the average jet rate with the
Durham and Cambridge algorithms were used to measure alpha(s) in the LEP energy
range by fitting an expression in which order alpah_2s calculations were
matched to a NLLA prediction and fitted to the data. Combining the measurements
at different centre-of-mass energies, the value of alpha_s (Mz) was determined
to be
alpha(s)(Mz)=0.1177+-0.0006(stat.)+-0.0012$(expt.)+-0.0010(had.)+-0.0032(theo.)
\.Comment: 40 pages, 17 figures, Submitted to Euro. Phys. J.
A compact statistical model of the song syntax in Bengalese finch
Songs of many songbird species consist of variable sequences of a finite
number of syllables. A common approach for characterizing the syntax of these
complex syllable sequences is to use transition probabilities between the
syllables. This is equivalent to the Markov model, in which each syllable is
associated with one state, and the transition probabilities between the states
do not depend on the state transition history. Here we analyze the song syntax
in a Bengalese finch. We show that the Markov model fails to capture the
statistical properties of the syllable sequences. Instead, a state transition
model that accurately describes the statistics of the syllable sequences
includes adaptation of the self-transition probabilities when states are
repeatedly revisited, and allows associations of more than one state to the
same syllable. Such a model does not increase the model complexity
significantly. Mathematically, the model is a partially observable Markov model
with adaptation (POMMA). The success of the POMMA supports the branching chain
network hypothesis of how syntax is controlled within the premotor song nucleus
HVC, and suggests that adaptation and many-to-one mapping from neural
substrates to syllables are important features of the neural control of complex
song syntax
Colour reconnection in e+e- -> W+W- at sqrt(s) = 189 - 209 GeV
The effects of the final state interaction phenomenon known as colour
reconnection are investigated at centre-of-mass energies in the range sqrt(s) ~
189-209 GeV using the OPAL detector at LEP. Colour reconnection is expected to
affect observables based on charged particles in hadronic decays of W+W-.
Measurements of inclusive charged particle multiplicities, and of their angular
distribution with respect to the four jet axes of the events, are used to test
models of colour reconnection. The data are found to exclude extreme scenarios
of the Sjostrand-Khoze Type I (SK-I) model and are compatible with other
models, both with and without colour reconnection effects. In the context of
the SK-I model, the best agreement with data is obtained for a reconnection
probability of 37%. Assuming no colour reconnection, the charged particle
multiplicity in hadronically decaying W bosons is measured to be (nqqch) =
19.38+-0.05(stat.)+-0.08 (syst.).Comment: 30 pages, 9 figures, Submitted to Euro. Phys. J.
Bose-Einstein Correlations in e+e- to W+W- at 172 and 183 GeV
Bose-Einstein correlations between like-charge pions are studied in hadronic
final states produced by e+e- annihilations at center-of-mass energies of 172
and 183 GeV. Three event samples are studied, each dominated by one of the
processes W+W- to qqlnu, W+W- to qqqq, or (Z/g)* to qq. After demonstrating the
existence of Bose-Einstein correlations in W decays, an attempt is made to
determine Bose-Einstein correlations for pions originating from the same W
boson and from different W bosons, as well as for pions from (Z/g)* to qq
events. The following results are obtained for the individual chaoticity
parameters lambda assuming a common source radius R: lambda_same = 0.63 +- 0.19
+- 0.14, lambda_diff = 0.22 +- 0.53 +- 0.14, lambda_Z = 0.47 +- 0.11 +- 0.08, R
= 0.92 +- 0.09 +- 0.09. In each case, the first error is statistical and the
second is systematic. At the current level of statistical precision it is not
established whether Bose-Einstein correlations, between pions from different W
bosons exist or not.Comment: 24 pages, LaTeX, including 6 eps figures, submitted to European
Physical Journal
W+W- production and triple gauge boson couplings at LEP energies up to 183 GeV
A study of W-pair production in e+e- annihilations at Lep2 is presented,
based on 877 W+W- candidates corresponding to an integrated luminosity of 57
pb-1 at sqrt(s) = 183 GeV. Assuming that the angular distributions of the
W-pair production and decay, as well as their branching fractions, are
described by the Standard Model, the W-pair production cross-section is
measured to be 15.43 +- 0.61 (stat.) +- 0.26 (syst.) pb. Assuming lepton
universality and combining with our results from lower centre-of-mass energies,
the W branching fraction to hadrons is determined to be 67.9 +- 1.2 (stat.) +-
0.5 (syst.)%. The number of W-pair candidates and the angular distributions for
each final state (qqlnu,qqqq,lnulnu) are used to determine the triple gauge
boson couplings. After combining these values with our results from lower
centre-of-mass energies we obtain D(kappa_g)=0.11+0.52-0.37,
D(g^z_1)=0.01+0.13-0.12 and lambda=-0.10+0.13-0.12, where the errors include
both statistical and systematic uncertainties and each coupling is determined
setting the other two couplings to the Standard Model value. The fraction of W
bosons produced with a longitudinal polarisation is measured to be
0.242+-0.091(stat.)+-0.023(syst.). All these measurements are consistent with
the Standard Model expectations.Comment: 48 pages, LaTeX, including 13 eps or ps figures, submitted to
European Physical Journal
Scaling violations of quark and gluon jet fragmentation functions in e+e- annihilations at sqrt(s) = 91.2 and 183-209 GeV
Flavour inclusive, udsc and b fragmentation functions in unbiased jets, and
flavour inclusive, udsc, b and gluon fragmentation functions in biased jets are
measured in e+e- annihilations from data collected at centre-of-mass energies
of 91.2, and 183-209 GeV with the OPAL detector at LEP. The unbiased jets are
defined by hemispheres of inclusive hadronic events, while the biased jet
measurements are based on three-jet events selected with jet algorithms.
Several methods are employed to extract the fragmentation functions over a wide
range of scales. Possible biases are studied in the results are obtained. The
fragmentation functions are compared to results from lower energy e+e-
experiments and with earlier LEP measurements and are found to be consistent.
Scaling violations are observed and are found to be stronger for the
fragmentation functions of gluon jets than for those of quarks. The measured
fragmentation functions are compared to three recent theoretical
next-to-leading order calculations and to the predictions of three Monte Carlo
event generators. While the Monte Carlo models are in good agreement with the
data, the theoretical predictions fail to describe the full set of results, in
particular the b and gluon jet measurements.Comment: 46 pages, 17 figures, Submitted to Eur. Phys J.
- …