38 research outputs found

    Secondary Structure of Chloroplast mRNAs In Vivo and In Vitro

    Get PDF
    mRNA secondary structure can influence gene expression, e.g., by influencing translation initiation. The probing of in vivo mRNA secondary structures is therefore necessary to understand what determines the efficiency and regulation of gene expression. Here, in vivo mRNA secondary structure was analyzed using dimethyl sulfate (DMS)-MaPseq and compared to in vitro-folded RNA. We used an approach to analyze specific, full-length transcripts. To test this approach, we chose low, medium, and high abundant mRNAs. We included both monocistronic and multicistronic transcripts. Because of the slightly alkaline pH of the chloroplast stroma, we could probe all four nucleotides with DMS. The structural information gained was evaluated using the known structure of the plastid 16S rRNA. This demonstrated that the results obtained for adenosines and cytidines were more reliable than for guanosines and uridines. The majority of mRNAs analyzed were less structured in vivo than in vitro. The in vivo secondary structure of the translation initiation region of most tested genes appears to be optimized for high translation efficiency

    最近の經濟學界

    Get PDF
    Direct assembly of multiple linear DNA fragments via homologous recombination, a phenomenon known as in vivo assembly or transformation associated recombination, is used in biotechnology to assemble DNA constructs ranging in size from a few kilobases to full synthetic microbial genomes. It has also enabled the complete replacement of eukaryotic chromosomes with heterologous DNA. The moss Physcomitrella patens, a non-vascular and spore producing land plant (Bryophyte), has a well-established capacity for homologous recombination. Here, we demonstrate the in vivo assembly of multiple DNA fragments in P. patens with three examples of effective genome editing: we (i) efficiently deleted a genomic locus for diterpenoid metabolism yielding a biosynthetic knockout, (ii) introduced a salt inducible promoter, and (iii) re-routed endogenous metabolism into the formation of amorphadiene, a precursor of high-value therapeutics. These proof-of-principle experiments pave the way for more complex and increasingly flexible approaches for large-scale metabolic engineering in plant biotechnology

    Local Absence of Secondary Structure Permits Translation of mRNAs that Lack Ribosome-Binding Sites

    Get PDF
    The initiation of translation is a fundamental and highly regulated process in gene expression. Translation initiation in prokaryotic systems usually requires interaction between the ribosome and an mRNA sequence upstream of the initiation codon, the so-called ribosome-binding site (Shine-Dalgarno sequence). However, a large number of genes do not possess Shine-Dalgarno sequences, and it is unknown how start codon recognition occurs in these mRNAs. We have performed genome-wide searches in various groups of prokaryotes in order to identify sequence elements and/or RNA secondary structural motifs that could mediate translation initiation in mRNAs lacking Shine-Dalgarno sequences. We find that mRNAs without a Shine-Dalgarno sequence are generally less structured in their translation initiation region and show a minimum of mRNA folding at the start codon. Using reporter gene constructs in bacteria, we also provide experimental support for local RNA unfoldedness determining start codon recognition in Shine-Dalgarno–independent translation. Consistent with this, we show that AUG start codons reside in single-stranded regions, whereas internal AUG codons are usually in structured regions of the mRNA. Taken together, our bioinformatics analyses and experimental data suggest that local absence of RNA secondary structure is necessary and sufficient to initiate Shine-Dalgarno–independent translation. Thus, our results provide a plausible mechanism for how the correct translation initiation site is recognized in the absence of a ribosome-binding site

    SARS-CoV-2 antibody prevalence among homeless people and shelter workers in Denmark:a nationwide cross-sectional study

    Get PDF
    BACKGROUND: People experiencing homelessness (PEH) and associated shelter workers may be at higher risk of infection with “Severe acute respiratory syndrome coronavirus 2” (SARS-CoV-2). The aim of this study was to determine the prevalence of SARS-CoV-2 among PEH and shelter workers in Denmark. DESIGN AND METHODS: In November 2020, we conducted a nationwide cross-sectional seroprevalence study among PEH and shelter workers at 21 recruitment sites in Denmark. The assessment included a point-of-care test for antibodies against SARS-CoV-2, followed by a questionnaire. The seroprevalence was compared to that of geographically matched blood donors considered as a proxy for the background population, tested using a total Ig ELISA assay. RESULTS: We included 827 participants in the study, of whom 819 provided their SARS-CoV-2 antibody results. Of those, 628 were PEH (median age 50.8 (IQR 40.9–59.1) years, 35.5% female) and 191 were shelter workers (median age 46.6 (IQR 36.1–55.0) years and 74.5% female). The overall seroprevalence was 6.7% and was similar among PEH and shelter workers (6.8% vs 6.3%, p = 0.87); and 12.2% among all participants who engaged in sex work. The overall participant seroprevalence was significantly higher than that of the background population (2.9%, p < 0.001). When combining all participants who reported sex work or were recruited at designated safe havens, we found a significantly increased risk of seropositivity compared to other participants (OR 2.23, 95%CI 1.06–4.43, p = 0.02). Seropositive and seronegative participants reported a similar presence of at least one SARS-CoV-2 associated symptom (49% and 54%, respectively). INTERPRETATIONS: The prevalence of SARS-CoV-2 antibodies was more than twice as high among PEH and associated shelter workers, compared to the background population. These results could be taken into consideration when deciding in which phase PEH are eligible for a vaccine, as part of the Danish national SARS-CoV-2 vaccination program rollout. FUNDING: TrygFonden and HelseFonden. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12889-022-13642-7

    Prospects to improve the nutritional quality of crops

    Get PDF
    A growing world population as well as the need to enhance sustainability and health create challenges for crop breeding. To address these challenges, not only quantitative but also qualitative improvements are needed, especially regarding the macro- and micronutrient composition and content. In this review, we describe different examples of how the nutritional quality of crops and the bioavailability of individual nutrients can be optimised. We focus on increasing protein content, the use of alternative protein crops and improving protein functionality. Furthermore, approaches to enhance the content of vitamins and minerals as well as healthy specialised metabolites and long-chain polyunsaturated fatty acids are considered. In addition, methods to reduce antinutrients and toxins are presented. These approaches could help to decrease the ‘hidden hunger’ caused by micronutrient deficiencies. Furthermore, a more diverse crop range with improved nutritional profile could help to shift to healthier and more sustainable plant-based diets

    Prospects to improve the nutritional quality of crops

    Get PDF
    A growing world population as well as the need to enhance sustainability and health create challenges for crop breeding. To address these challenges, not only quantitative but also qualitative improvements are needed, especially regarding the macro- and micronutrient composition and content. In this review, we describe different examples of how the nutritional quality of crops and the bioavailability of individual nutrients can be optimised. We focus on increasing protein content, the use of alternative protein crops and improving protein functionality. Furthermore, approaches to enhance the content of vitamins and minerals as well as healthy specialised metabolites and long-chain polyunsaturated fatty acids are considered. In addition, methods to reduce antinutrients and toxins are presented. These approaches could help to decrease the ‘hidden hunger’ caused by micronutrient deficiencies. Furthermore, a more diverse crop range with improved nutritional profile could help to shift to healthier and more sustainable plant-based diets

    Paving the way towards future-proofing our crops

    Get PDF
    To meet the increasing global demand for food, feed, fibre and other plant-derived products, a steep increase in crop productivity is a scientifically and technically challenging imperative. The CropBooster-P project, a response to the H2020 call ‘Future proofing our plants’, is developing a roadmap for plant research to improve crops critical for the future of European agriculture by increasing crop yield, nutritional quality, value for non-food applications and sustainability. However, if we want to efficiently improve crop production in Europe and prioritize methods for crop trait improvement in the coming years, we need to take into account future socio-economic, technological and global developments, including numerous policy and socio-economic challenges and constraints. Based on a wide range of possible global trends and key uncertainties, we developed four extreme future learning scenarios that depict complementary future developments. Here, we elaborate on how the scenarios could inform and direct future plant research, and we aim to highlight the crop improvement approaches that could be the most promising or appropriate within each of these four future world scenarios. Moreover, we discuss some key plant technology options that would need to be developed further to meet the needs of multiple future learning scenarios, such as improving methods for breeding and genetic engineering. In addition, other diverse platforms of food production may offer unrealized potential, such as underutilized terrestrial and aquatic species as alternative sources of nutrition and biomass production. We demonstrate that although several methods or traits could facilitate a more efficient crop production system in some of the scenarios, others may offer great potential in all four of the future learning scenarios. Altogether, this indicates that depending on which future we are heading toward, distinct plant research fields should be given priority if we are to meet our food, feed and non-food biomass production needs in the coming decades

    Improving crop yield potential: Underlying biological processes and future prospects

    Get PDF
    The growing world population and global increases in the standard of living both result in an increasing demand for food, feed and other plant‐derived products. In the coming years, plant‐based research will be among the major drivers ensuring food security and the expansion of the bio‐based economy. Crop productivity is determined by several factors, including the available physical and agricultural resources, crop management, and the resource use efficiency, quality and intrinsic yield potential of the chosen crop. This review focuses on intrinsic yield potential, since understanding its determinants and their biological basis will allow to maximize the plant's potential in food and energy production. Yield potential is determined by a variety of complex traits that integrate strictly regulated processes and their underlying gene regulatory networks. Due to this inherent complexity, numerous potential targets have been identified that could be exploited to increase crop yield. These encompass diverse metabolic and physical processes at the cellular, organ and canopy level. We present an overview of some of the distinct biological processes considered to be crucial for yield determination that could further be exploited to improve future crop productivity
    corecore