25 research outputs found

    Development of an evidence evaluation and synthesis system for drug-drug interactions, and its application to a systematic review of HIV and malaria co-infection

    Get PDF
    Contains fulltext : 169953.pdf (publisher's version ) (Open Access)BACKGROUND: In all settings, there are challenges associated with safely treating patients with multimorbidity and polypharmacy. The need to characterise, understand and limit harms resulting from medication use is therefore increasingly important. Drug-drug interactions (DDIs) are prevalent in patients taking antiretrovirals (ARVs) and if unmanaged, may pose considerable risk to treatment outcome. One of the biggest challenges in preventing DDIs is the substantial gap between theory and clinical practice. There are no robust methods published for formally assessing quality of evidence relating to DDIs, despite the diverse sources of information. We defined a transparent, structured process for developing evidence quality summaries in order to guide therapeutic decision making. This was applied to a systematic review of DDI data with considerable public health significance: HIV and malaria. METHODS AND FINDINGS: This was a systematic review of DDI data between antiretrovirals and drugs used in prophylaxis and treatment of malaria. The data comprised all original research in humans that evaluated pharmacokinetic data and/or related adverse events when antiretroviral agents were combined with antimalarial agents, including healthy volunteers, patients with HIV and/or malaria, observational studies, and case reports. The data synthesis included 36 articles and conference presentations published via PubMed and conference websites/abstract books between 1987-August 2016. There is significant risk of DDIs between HIV protease inhibitors, or NNRTIs and artemesinin-containing antimalarial regimens. For many antiretrovirals, DDI studies with antimalarials were lacking, and the majority were of moderate to very low quality. Quality of evidence and strength of recommendation categories were defined and developed specifically for recommendations concerning DDIs. CONCLUSIONS: There is significant potential for DDIs between antiretrovirals and antimalarials. The application of quality of evidence and strength of recommendation criteria to DDI data is feasible, and allows the assessment of DDIs to be robust, consistent, transparent and evidence-based

    Therapeutic drug monitoring: an aid to optimising response to antiretroviral drugs?

    No full text
    Item does not contain fulltextTherapeutic drug monitoring (TDM) has been proposed as a means to optimise response to highly active antiretroviral therapy (HAART) in HIV infection. Protease inhibitors (PIs) and the non-nucleoside reverse transcriptase inhibitors (NNRTIs) efavirenz and nevirapine satisfy many criteria for TDM. Nucleoside reverse transcriptase inhibitors (NRTIs) are not suitable candidates for TDM, since no clear plasma concentration-effect relationships have been established for these drugs.Several important limitations to the application of TDM for antiretroviral drugs should be recognised, including uncertainty about the best pharmacokinetic predictor of response and insufficient validation of target concentrations for individual PIs and NNRTIs. Data from two clinical trials support the use of TDM in treatment-naive HIV-infected patients who start with an indinavir- or nelfinavir-based regimen. TDM either prevented virological failures (presumably by preventing the development of resistance) or treatment discontinuations due to concentration-related toxicity. Application of routine TDM in other patient groups (treatment-experienced patients) or for drugs other than indinavir or nelfinavir (NNRTIs, other PIs, combination of PIs) is speculative at this moment. However, TDM can be used in selected patient groups (children, pregnant women, patients with renal or hepatic dysfunction) to confirm adequate drug concentrations, and for management of drug-drug interactions.TDM in treatment-experienced patients may be optimally used in conjunction with resistance testing. The integration of pharmacological and virological measures in the inhibitory quotient (IQ) needs to be standardised and elaborated further. TDM should be accompanied by careful assessment of adherence and can itself help identify non-adherence, although a drug concentration only reflects the last few drug doses taken by a patient. Additional clinical trials are needed before routine TDM can be adopted as standard of care in the treatment of HIV infection

    Update of the drug resistance mutations in HIV-1: Fall 2005.

    No full text
    The International AIDS Society-USA (IAS-USA) Drug Resistance Mutations Group is marking 5 years as an independent volunteer panel of experts focused on identifying key HIV-1 drug resistance mutations. The goal of the effort is to quickly deliver accurate and unbiased information on these mutations to HIV clinical practitioners. The October/November 2005 version of the IAS-USA Drug Resistance Mutations Figures replaces the version published in this journal in March/April 2005. The IAS-USA Drug Resistance Mutations Figures are designed for use in identifying mutations associated with viral resistance to antiretroviral drugs and in making therapeutic decisions. Care should be taken when using this list of mutations for surveillance or epidemiologic studies of transmission of drug-resistant virus. A number of amino acid substitutions, particularly minor mutations, represent polymorphisms that in isolation may not reflect prior drug selective pressure or reduced drug susceptibility

    Drug level testing as a strategy to determine eligibility for drug resistance testing after failure of ART: a retrospective analysis of South African adult patients on second-line ART

    Get PDF
    Contains fulltext : 220642.pdf (publisher's version ) (Open Access)INTRODUCTION: When protease inhibitor (PI)-based second-line ART fails, guidelines recommend drug resistance testing and individualized third-line treatment. However, PI-resistant viral strains are rare and drug resistance testing is costly. We investigated whether less costly PI-exposure testing can be used to select those patients who would benefit most from drug resistance testing. METHODS: We performed a retrospective analysis of South African adults living with HIV experiencing failure of ritonavir-boosted-lopinavir (LPV/r)-based second-line ART for whom drug resistance testing results were available. We included patients who received plasma-based drug resistance testing at a central South African reference laboratory in 2017 and patients who received dried blood spots (DBS)-based drug resistance testing at a rural South African clinic between 2009 and 2017. PI-exposure testing was performed on remnant plasma or DBS using liquid chromatography mass spectrometry (LCMS). Additionally, a low-cost immunoassay was used on plasma. Population genotypic drug resistance testing of the pol region was performed on plasma and DBS using standard clinical protocols. RESULTS: Samples from 544 patients (494 plasma samples and 50 DBS) were included. Median age was 41.0 years (IQR: 33.3 to 48.5) and 58.6% were women. Median HIV-RNA load was 4.9 log10 copies/mL (4.3 to 5.4). Prevalence of resistance to the NRTI-backbone was 70.6% (349/494) in plasma samples and 56.0% (28/50) in DBS. Major PI-resistance mutations conferring high-level resistance to LPV/r were observed in 26.7% (132/494) of plasma samples and 12% (6/50) of DBS. PI-exposure testing revealed undetectable LPV levels in 47.0% (232/494) of plasma samples and in 60.0% (30/50) of DBS. In pooled analysis of plasma and DBS samples, detectable LPV levels had a sensitivity of 90% (84% to 94%) and a negative predictive failure of 95% (91% to 97%) for the presence of major LPV/r resistance. CONCLUSIONS: PI-exposure testing revealed non-adherence in half of patients experiencing failure on second-line ART and accurately predicted the presence or absence of clinically relevant PI resistance. PI-exposure testing constitutes a novel screening strategy in patients with virological failure of ART that can differentiate between different underlying causes of therapy failure and may allow for more effective use of limited resources available for drug resistance testing

    Mutations in WDR4 as a new cause of Galloway-Mowat syndrome

    No full text
    Item does not contain fulltextGalloway-Mowat syndrome (GAMOS) is a phenotypically heterogeneous disorder characterized by neurodevelopmental defects combined with renal-glomerular disease, manifesting with proteinuria. To identify additional monogenic disease causes, we here performed whole exome sequencing (WES), linkage analysis, and homozygosity mapping in three affected siblings of an Indian family with GAMOS. Applying established criteria for variant filtering, we identify a novel homozygous splice site mutation in the gene WDR4 as the likely disease-causing mutation in this family. In line with previous reports, we observe growth deficiency, microcephaly, developmental delay, and intellectual disability as phenotypic features resulting from WDR4 mutations. However, the newly identified allele additionally gives rise to proteinuria and nephrotic syndrome, a phenotype that was never reported in patients with WDR4 mutations. Our data thus expand the phenotypic spectrum of WDR4 mutations by demonstrating that, depending on the specific mutated allele, a renal phenotype may be present. This finding suggests that GAMOS may occupy a phenotypic spectrum with other microcephalic diseases. Furthermore, WDR4 is an additional example of a gene that encodes a tRNA modifying enzyme and gives rise to GAMOS, if mutated. Our findings thereby support the recent observation that, like neurons, podocytes of the renal glomerulus are particularly vulnerable to cellular defects resulting from altered tRNA modifications

    Genetic variants in the LAMA5 gene in pediatric nephrotic syndrome

    No full text
    Item does not contain fulltextBACKGROUND: Nephrotic syndrome (NS), a chronic kidney disease, is characterized by significant loss of protein in the urine causing hypoalbuminemia and edema. In general, approximately 15% of childhood-onset cases do not respond to steroid therapy and are classified as steroid-resistant NS (SRNS). In approximately 30% of cases with SRNS, a causative mutation can be detected in one of 44 monogenic SRNS genes. The gene LAMA5 encodes laminin-alpha5, an essential component of the glomerular basement membrane. Mice with a hypomorphic mutation in the orthologous gene Lama5 develop proteinuria and hematuria. METHODS: To identify additional monogenic causes of NS, we performed whole exome sequencing in 300 families with pediatric NS. In consanguineous families we applied homozygosity mapping to identify genomic candidate loci for the underlying recessive mutation. RESULTS: In three families, in whom mutations in known NS genes were excluded, but in whom a recessive, monogenic cause of NS was strongly suspected based on pedigree information, we identified homozygous variants of unknown significance (VUS) in the gene LAMA5. While all affected individuals had nonsyndromic NS with an early onset of disease, their clinical outcome and response to immunosuppressive therapy differed notably. CONCLUSION: We here identify recessive VUS in the gene LAMA5 in patients with partially treatment-responsive NS. More data will be needed to determine the impact of these VUS in disease management. However, familial occurrence of disease, data from genetic mapping and a mouse model that recapitulates the NS phenotypes suggest that these genetic variants may be inherited factors that contribute to the development of NS in pediatric patients
    corecore