90 research outputs found

    Spontaneous annihilation of high-density matter in the electroweak theory

    Get PDF
    In the presence of fermionic matter the topologically distinct vacua of the standard model are metastable and can decay by tunneling through the sphaleron barrier. This process annihilates one fermion per doublet due to the anomalous non-conservation of baryon and lepton currents and is accompanied by a production of gauge and Higgs bosons. We present a numerical method to obtain local bounce solutions which minimize the Euclidean action in the space of all configurations connecting two adjacent topological sectors. These solutions determine the decay rate and the configuration of the fields after the tunneling. We also follow the real time evolution of this configuration and analyze the spectrum of the created bosons. If the matter density exceeds some critical value, the exponentially suppressed tunneling triggers off an avalanche producing an enormous amount of bosons.Comment: 38 pages, 6 Postscript figure

    Estudo multicêntrico comparativo de quatro diferentes tipos de sensores: atividade, acelerômetro, temperatura e período de pré-ejeçao

    Get PDF
    Recentemente diferentes princípios têm sido utilizados para estimular o coraçao na tentativa de recuperar o débito cardíaco. Neste estudo multicêntrico, foram comparadas as respostas à estimulaçao por 4 tipos de sensores, sendo 3 tipos de resposta de alça aberta (atividade física, acelerômetro e temperatura venosa central) implantados em 30 (SSIR-8 e DDDR-22), 9 (SSIR-5 -e DDDR-4) e 12 (SSIR) pacientes respectivamente. Um outro sensor do tipo alça fechada, sensível às variaçoes do sistema nervoso autônomo, foi implantado em 57 pacientes, todos no modo DDDR. Os resultados obtidos durante a realizaçao de atividade física diária, de teste ergométrico e de Holter de 24 horas foram comparados, sendo possível observar uma maior fidelidade na curva de resposta de freqüência frente a atividade física, nos pacientes submetidos à estimulaçao de alça fechada

    Estudo multicêntrico comparativo de quatro diferentes tipos de sensores: atividade, acelerômetro, temperatura e período de pré-ejeçao

    Get PDF
    Recentemente diferentes princípios têm sido utilizados para estimular o coraçao na tentativa de recuperar o débito cardíaco. Neste estudo multicêntrico, foram comparadas as respostas à estimulaçao por 4 tipos de sensores, sendo 3 tipos de resposta de alça aberta (atividade física, acelerômetro e temperatura venosa central) implantados em 30 (SSIR-8 e DDDR-22), 9 (SSIR-5 -e DDDR-4) e 12 (SSIR) pacientes respectivamente. Um outro sensor do tipo alça fechada, sensível às variaçoes do sistema nervoso autônomo, foi implantado em 57 pacientes, todos no modo DDDR. Os resultados obtidos durante a realizaçao de atividade física diária, de teste ergométrico e de Holter de 24 horas foram comparados, sendo possível observar uma maior fidelidade na curva de resposta de freqüência frente a atividade física, nos pacientes submetidos à estimulaçao de alça fechada

    SOCS2-Induced Proteasome-Dependent TRAF6 Degradation: A Common Anti-Inflammatory Pathway for Control of Innate Immune Responses

    Get PDF
    Pattern recognition receptors and receptors for pro-inflammatory cytokines provide critical signals to drive the development of protective immunity to infection. Therefore, counter-regulatory pathways are required to ensure that overwhelming inflammation harm host tissues. Previously, we showed that lipoxins modulate immune response during infection, restraining inflammation during infectious diseases in an Aryl hydrocarbon receptor (AhR)/suppressors of cytokine signaling (SOCS)2-dependent-manner. Recently, Indoleamine-pyrrole 2,3- dioxygenase (IDO)-derived tryptophan metabolites, including L-kynurenine, were also shown to be involved in several counter-regulatory mechanisms. Herein, we addressed whether the intracellular molecular events induced by lipoxins mediating control of innate immune signaling are part of a common regulatory pathway also shared by L-kynurenine exposure. We demonstrate that Tumor necrosis factor receptor-associated factor (TRAF)6 – member of a family of adapter molecules that couple the TNF receptor and interleukin-1 receptor/Toll-like receptor families to intracellular signaling events essential for the development of immune responses – is targeted by both lipoxins and L-kynurenine via an AhR/SOCS2-dependent pathway. Furthermore, we show that LXA4- and L-kynurenine-induced AhR activation, its subsequent nuclear translocation, leading SOCS2 expression and TRAF6 Lys47-linked poly-ubiquitination and proteosome-mediated degradation of the adapter proteins. The in vitro consequences of such molecular interactions included inhibition of TLR- and cytokine receptor-driven signal transduction and cytokine production. Subsequently, in vivo proteosome inhibition led to unresponsiveness to lipoxins, as well as to uncontrolled pro-inflammatory reactions and elevated mortality during toxoplasmosis. In summary, our results establish proteasome degradation of TRAF6 as a key molecular target for the anti-inflammatory pathway triggered by lipoxins and L-kynurenine, critical counter-regulatory mediators in the innate and adaptive immune systems

    The drivers and impacts of Amazon forest degradation

    Get PDF
    BACKGROUND: Most analyses of land-use and land-cover change in the Amazon forest have focused on the causes and effects of deforestation. However, anthropogenic disturbances cause degradation of the remaining Amazon forest and threaten their future. Among such disturbances, the most important are edge effects (due to deforestation and the resulting habitat fragmentation), timber extraction, fire, and extreme droughts that have been intensified by human-induced climate change. We synthesize knowledge on these disturbances that lead to Amazon forest degradation, including their causes and impacts, possible future extents, and some of the interventions required to curb them. ADVANCES: Analysis of existing data on the extent of fire, edge effects, and timber extraction between 2001 and 2018 reveals that 0.36 ×106 km2 (5.5%) of the Amazon forest is under some form of degradation, which corresponds to 112% of the total area deforested in that period. Adding data on extreme droughts increases the estimate of total degraded area to 2.5 ×106 km2, or 38% of the remaining Amazonian forests. Estimated carbon loss from these forest disturbances ranges from 0.05 to 0.20 Pg C year−1 and is comparable to carbon loss from deforestation (0.06 to 0.21 Pg C year−1). Disturbances can bring about as much biodiversity loss as deforestation itself, and forests degraded by fire and timber extraction can have a 2 to 34% reduction in dry-season evapotranspiration. The underlying drivers of disturbances (e.g., agricultural expansion or demand for timber) generate material benefits for a restricted group of regional and global actors, whereas the burdens permeate across a broad range of scales and social groups ranging from nearby forest dwellers to urban residents of Andean countries. First-order 2050 projections indicate that the four main disturbances will remain a major threat and source of carbon fluxes to the atmosphere, independent of deforestation trajectories. OUTLOOK: Whereas some disturbances such as edge effects can be tackled by curbing deforestation, others, like constraining the increase in extreme droughts, require additional measures, including global efforts to reduce greenhouse gas emissions. Curbing degradation will also require engaging with the diverse set of actors that promote it, operationalizing effective monitoring of different disturbances, and refining policy frameworks such as REDD+. These will all be supported by rapid and multidisciplinary advances in our socioenvironmental understanding of tropical forest degradation, providing a robust platform on which to co-construct appropriate policies and programs to curb it

    The drivers and impacts of Amazon forest degradation

    Get PDF
    Approximately 2.5 × 10 6 square kilometers of the Amazon forest are currently degraded by fire, edge effects, timber extraction, and/or extreme drought, representing 38% of all remaining forests in the region. Carbon emissions from this degradation total up to 0.2 petagrams of carbon per year (Pg C year −1 ), which is equivalent to, if not greater than, the emissions from Amazon deforestation (0.06 to 0.21 Pg C year −1 ). Amazon forest degradation can reduce dry-season evapotranspiration by up to 34% and cause as much biodiversity loss as deforestation in human-modified landscapes, generating uneven socioeconomic burdens, mainly to forest dwellers. Projections indicate that degradation will remain a dominant source of carbon emissions independent of deforestation rates. Policies to tackle degradation should be integrated with efforts to curb deforestation and complemented with innovative measures addressing the disturbances that degrade the Amazon forest
    • …
    corecore