8,258 research outputs found

    Benefit-cost methodology study with example application of the use of wind generators

    Get PDF
    An example application for cost-benefit methodology is presented for the use of wind generators. The approach adopted for the example application consisted of the following activities: (1) surveying of the available wind data and wind power system information, (2) developing models which quantitatively described wind distributions, wind power systems, and cost-benefit differences between conventional systems and wind power systems, and (3) applying the cost-benefit methodology to compare a conventional electrical energy generation system with systems which included wind power generators. Wind speed distribution data were obtained from sites throughout the contiguous United States and were used to compute plant factor contours shown on an annual and seasonal basis. Plant factor values (ratio of average output power to rated power) are found to be as high as 0.6 (on an annual average basis) in portions of the central U. S. and in sections of the New England coastal area. Two types of wind power systems were selected for the application of the cost-benefit methodology. A cost-benefit model was designed and implemented on a computer to establish a practical tool for studying the relative costs and benefits of wind power systems under a variety of conditions and to efficiently and effectively perform associated sensitivity analyses

    Local stabilisation of polar order at charged antiphase boundaries in antiferroelectric (Bi<sub>0.85</sub>Nd<sub>0.15</sub>)(Ti<sub>0.1</sub>Fe<sub>0.9</sub>)O<sub>3</sub>

    Get PDF
    Observation of an unusual, negatively-charged antiphase boundary in (Bi&lt;sub&gt;0.85&lt;/sub&gt;Nd&lt;sub&gt;0.15&lt;/sub&gt;)(Ti&lt;sub&gt;0.1&lt;/sub&gt;Fe&lt;sub&gt;0.9&lt;/sub&gt;)O&lt;sub&gt;3&lt;/sub&gt; is reported. Aberration corrected scanning transmission electron microscopy is used to establish the full three dimensional structure of this boundary including O-ion positions to ~ ± 10 pm. The charged antiphase boundary stabilises tetragonally distorted regions with a strong polar ordering to either side of the boundary, with a characteristic length scale determined by the excess charge trapped at the boundary. Far away from the boundary the crystal relaxes into the well-known Nd-stabilised antiferroelectric phase

    Can gender categorization influence the perception of animated virtual humans?

    Full text link
    Animations have become increasingly realistic with the evolution of Computer Graphics (CG). In particular, human models and behaviors were represented through animated virtual humans, sometimes with a high level of realism. In particular, gender is a characteristic that is related to human identification, so that virtual humans assigned to a specific gender have, in general, stereotyped representations through movements, clothes, hair and colors, in order to be understood by users as desired by designers. An important area of study is finding out whether participants' perceptions change depending on how a virtual human is visually presented. Findings in this area can help the industry to guide the modeling and animation of virtual humans to deliver the expected impact to the audience. In this paper, we reproduce, through CG, a perceptual study that aims to assess gender bias in relation to a simulated baby. In the original study, two groups of people watched the same video of a baby reacting to the same stimuli, but one group was told the baby was female and the other group was told the same baby was male, producing different perceptions. The results of our study with virtual babies were similar to the findings with real babies. First, it shows that people's emotional response change depending on the character gender attribute, in this case the only difference was the baby's name. Our research indicates that by just informing the name of a virtual human can be enough to create a gender perception that impact the participant emotional answer.Comment: 8 pages, 1 figure, 2 table

    Gaze following in ungulates: Domesticated and non-domesticated species follow the gaze of both human and conspecifics in an experimental context

    Get PDF
    Gaze following is the ability to use others’ gaze to obtain information about the environment (e.g., food location, predators, and social interactions). As such, it may be highly adaptive in a variety of socio-ecological contexts, and thus be widespread across animal taxa. To date, gaze following has been mostly studied in primates, and partially in birds, but little is known on the gaze following abilities of other taxa and, especially, on the evolutionary pressures that led to their emergence. In this study, we used an experimental approach to test gaze following skills in a still understudied taxon, ungulates. Across four species (i.e., domestic goats and lamas, and non-domestic guanacos and mouflons), we assessed the individual ability to spontaneously follow the gaze of both conspecifics and human experimenters in different conditions. In line with our predictions, species followed the model’s gaze both with human and conspecific models, but more likely with the latter. Except for guanacos, all species showed gaze following significantly more in the experimental conditions (than in the control ones). Despite the relative low number of study subjects, our study provides the first experimental evidence of gaze following skills in non-domesticated ungulates, and contributes to understanding how gaze following skills are distributed in another taxon—an essential endeavor to identify the evolutionary pressures leading to the emergence of gaze following skills across taxa

    Observation Scheduling System

    Get PDF
    Software has been designed to schedule remote sensing with the Earth Observing One spacecraft. The software attempts to satisfy as many observation requests as possible considering each against spacecraft operation constraints such as data volume, thermal, pointing maneuvers, and others. More complex constraints such as temperature are approximated to enable efficient reasoning while keeping the spacecraft within safe limits. Other constraints are checked using an external software library. For example, an attitude control library is used to determine the feasibility of maneuvering between pairs of observations. This innovation can deal with a wide range of spacecraft constraints and solve large scale scheduling problems like hundreds of observations and thousands of combinations of observation sequences

    Neophobia in 10 ungulate specie - a comparative approach

    Get PDF

    Typical-Medium Theory of Mott-Anderson Localization

    Full text link
    The Mott and the Anderson routes to localization have long been recognized as the two basic processes that can drive the metal-insulator transition (MIT). Theories separately describing each of these mechanisms were discussed long ago, but an accepted approach that can include both has remained elusive. The lack of any obvious static symmetry distinguishing the metal from the insulator poses another fundamental problem, since an appropriate static order parameter cannot be easily found. More recent work, however, has revisited the original arguments of Anderson and Mott, which stressed that the key diference between the metal end the insulator lies in the dynamics of the electron. This physical picture has suggested that the "typical" (geometrically averaged) escape rate from a given lattice site should be regarded as the proper dynamical order parameter for the MIT, one that can naturally describe both the Anderson and the Mott mechanism for localization. This article provides an overview of the recent results obtained from the corresponding Typical-Medium Theory, which provided new insight into the the two-fluid character of the Mott-Anderson transition.Comment: to be published in "Fifty Years of Anderson localization", edited by E. Abrahams (World Scientific, Singapore, 2010); 29 pages, 22 figures

    Planning and Execution for an Autonomous Aerobot

    Get PDF
    The Aerial Onboard Autonomous Science Investigation System (AerOASIS) system provides autonomous planning and execution capabilities for aerial vehicles (see figure). The system is capable of generating high-quality operations plans that integrate observation requests from ground planning teams, as well as opportunistic science events detected onboard the vehicle while respecting mission and resource constraints. AerOASIS allows an airborne planetary exploration vehicle to summarize and prioritize the most scientifically relevant data; identify and select high-value science sites for additional investigation; and dynamically plan, schedule, and monitor the various science activities being performed, even during extended communications blackout periods with Earth

    Degree of explanation

    Get PDF
    Partial explanations are everywhere. That is, explanations citing causes that explain some but not all of an effect are ubiquitous across science, and these in turn rely on the notion of degree of explanation. I argue that current accounts are seriously deficient. In particular, they do not incorporate adequately the way in which a cause’s explanatory importance varies with choice of explanandum. Using influential recent contrastive theories, I develop quantitative definitions that remedy this lacuna, and relate it to existing measures of degree of causation. Among other things, this reveals the precise role here of chance, as well as bearing on the relation between causal explanation and causation itself
    • …
    corecore