165 research outputs found

    Emergency department visits, ambulance calls, and mortality associated with an exceptional heat wave in Sydney, Australia, 2011: a time-series analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>From January 30-February 6, 2011, New South Wales was affected by an exceptional heat wave, which broke numerous records. Near real-time Emergency Department (ED) and ambulance surveillance allowed rapid detection of an increase in the number of heat-related ED visits and ambulance calls during this period. The purpose of this study was to quantify the excess heat-related and all-cause ED visits and ambulance calls, and excess all-cause mortality, associated with the heat wave.</p> <p>Methods</p> <p>ED and ambulance data were obtained from surveillance and administrative databases, while mortality data were obtained from the state death registry. The observed counts were compared with the average counts from the same period from 2006/07 through 2009/10, and a Poisson regression model was constructed to calculate the number of excess ED visits, ambulance and deaths after adjusting for calendar and lag effects.</p> <p>Results</p> <p>During the heat wave there were 104 and 236 ED visits for heat effects and dehydration respectively, and 116 ambulance calls for heat exposure. From the regression model, all-cause ED visits increased by 2% (95% CI 1.01-1.03), all-cause ambulance calls increased by 14% (95% CI 1.11-1.16), and all-cause mortality increased by 13% (95% CI 1.06-1.22). Those aged 75 years and older had the highest excess rates of all outcomes.</p> <p>Conclusions</p> <p>The 2011 heat wave resulted in an increase in the number of ED visits and ambulance calls, especially in older persons, as well as an increase in all-cause mortality. Rapid surveillance systems provide markers of heat wave impacts that have fatal outcomes.</p

    From Spiking Neuron Models to Linear-Nonlinear Models

    Get PDF
    Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN) cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal filter and a static non-linear transformation. These simplified models leave out the biophysical details of action potential generation. It is not a priori clear to which extent the input-output mapping of biophysically more realistic, spiking neuron models can be reduced to a simple linear-nonlinear cascade. Here we investigate this question for the leaky integrate-and-fire (LIF), exponential integrate-and-fire (EIF) and conductance-based Wang-Buzsáki models in presence of background synaptic activity. We exploit available analytic results for these models to determine the corresponding linear filter and static non-linearity in a parameter-free form. We show that the obtained functions are identical to the linear filter and static non-linearity determined using standard reverse correlation analysis. We then quantitatively compare the output of the corresponding linear-nonlinear cascade with numerical simulations of spiking neurons, systematically varying the parameters of input signal and background noise. We find that the LN cascade provides accurate estimates of the firing rates of spiking neurons in most of parameter space. For the EIF and Wang-Buzsáki models, we show that the LN cascade can be reduced to a firing rate model, the timescale of which we determine analytically. Finally we introduce an adaptive timescale rate model in which the timescale of the linear filter depends on the instantaneous firing rate. This model leads to highly accurate estimates of instantaneous firing rates

    Phylogeny of Echinoderm Hemoglobins

    Get PDF
    Recent genomic information has revealed that neuroglobin and cytoglobin are the two principal lineages of vertebrate hemoglobins, with the latter encompassing the familiar myoglobin and α-globin/β-globin tetramer hemoglobin, and several minor groups. In contrast, very little is known about hemoglobins in echinoderms, a phylum of exclusively marine organisms closely related to vertebrates, beyond the presence of coelomic hemoglobins in sea cucumbers and brittle stars. We identified about 50 hemoglobins in sea urchin, starfish and sea cucumber genomes and transcriptomes, and used Bayesian inference to carry out a molecular phylogenetic analysis of their relationship to vertebrate sequences, specifically, to assess the hypothesis that the neuroglobin and cytoglobin lineages are also present in echinoderms.The genome of the sea urchin Strongylocentrotus purpuratus encodes several hemoglobins, including a unique chimeric 14-domain globin, 2 androglobin isoforms and a unique single androglobin domain protein. Other strongylocentrotid genomes appear to have similar repertoires of globin genes. We carried out molecular phylogenetic analyses of 52 hemoglobins identified in sea urchin, brittle star and sea cucumber genomes and transcriptomes, using different multiple sequence alignment methods coupled with Bayesian and maximum likelihood approaches. The results demonstrate that there are two major globin lineages in echinoderms, which are related to the vertebrate neuroglobin and cytoglobin lineages. Furthermore, the brittle star and sea cucumber coelomic hemoglobins appear to have evolved independently from the cytoglobin lineage, similar to the evolution of erythroid oxygen binding globins in cyclostomes and vertebrates.The presence of echinoderm globins related to the vertebrate neuroglobin and cytoglobin lineages suggests that the split between neuroglobins and cytoglobins occurred in the deuterostome ancestor shared by echinoderms and vertebrates

    Deep sequencing of the Mexican avocado transcriptome, an ancient angiosperm with a high content of fatty acids

    Get PDF
    Background: Avocado (Persea americana) is an economically important tropical fruit considered to be a good source of fatty acids. Despite its importance, the molecular and cellular characterization of biochemical and developmental processes in avocado is limited due to the lack of transcriptome and genomic information. Results: The transcriptomes of seeds, roots, stems, leaves, aerial buds and flowers were determined using different sequencing platforms. Additionally, the transcriptomes of three different stages of fruit ripening (pre-climacteric, climacteric and post-climacteric) were also analyzed. The analysis of the RNAseqatlas presented here reveals strong differences in gene expression patterns between different organs, especially between root and flower, but also reveals similarities among the gene expression patterns in other organs, such as stem, leaves and aerial buds (vegetative organs) or seed and fruit (storage organs). Important regulators, functional categories, and differentially expressed genes involved in avocado fruit ripening were identified. Additionally, to demonstrate the utility of the avocado gene expression atlas, we investigated the expression patterns of genes implicated in fatty acid metabolism and fruit ripening. Conclusions: A description of transcriptomic changes occurring during fruit ripening was obtained in Mexican avocado, contributing to a dynamic view of the expression patterns of genes involved in fatty acid biosynthesis and the fruit ripening process

    From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways

    Get PDF
    The human body hosts an enormous abundance and diversity of microbes, which perform a range of essential and beneficial functions. Our appreciation of the importance of these microbial communities to many aspects of human physiology has grown dramatically in recent years. We know, for example, that animals raised in a germ-free environment exhibit substantially altered immune and metabolic function, while the disruption of commensal microbiota in humans is associated with the development of a growing number of diseases. Evidence is now emerging that, through interactions with the gut-brain axis, the bidirectional communication system between the central nervous system and the gastrointestinal tract, the gut microbiome can also influence neural development, cognition and behaviour, with recent evidence that changes in behaviour alter gut microbiota composition, while modifications of the microbiome can induce depressive-like behaviours. Although an association between enteropathy and certain psychiatric conditions has long been recognized, it now appears that gut microbes represent direct mediators of psychopathology. Here, we examine roles of gut microbiome in shaping brain development and neurological function, and the mechanisms by which it can contribute to mental illness. Further, we discuss how the insight provided by this new and exciting field of research can inform care and provide a basis for the design of novel, microbiota-targeted, therapies.GB Rogers, DJ Keating, RL Young, M-L Wong, J Licinio, and S Wesseling

    On the development of sintered aluminium alloys for industrial applications

    No full text

    P/M in Australia

    No full text
    Powder metallurgy activities in Australia are reviewed. Though relatively small, the industry is diverse and is experiencing record sales, buoyed by a strong domestic economy. In particular, the industry is underpinned by a vibrant automotive sector and a dominant mining and minerals industry. Research on powder metallurgy and particulate materials is conducted primarily in the universities with emphasis on mechanical alloying and aluminium alloys. Overall, the future outlook for powder metallurgy in Australia is excellent

    Distortion in a sintered 7000 series aluminium alloy

    No full text
    The 7000 series aluminium alloys processed using elemental powder mixtures are prone to distortion, which is manifest as hourglassing or waisting in cylindrical specimens. By characterising the density distribution using hardness measurements, it is shown that the green density is not evenly distributed through a part, even though aluminium is relatively soft and readily compacted. Because the density equilibrates during sintering, the non-uniform green density leads to distortion. The cause of this distortion is a result of differential shrinkage, which occurs during sintering as well as on solidification during cooling from sintering. Distortion can be controlled by increasing the compaction pressure, which homogenises the green density and does not affect the tensile properties
    corecore