4,569 research outputs found

    Supersymmetric large tan(beta) corrections to DeltaM_(d,s) and B_(d,s) -> mu+mu- revisited

    Full text link
    We point out that in the minimal supersymmetric standard model terms from the mixing of Higgs and Goldstone bosons which are connected to the renormalization of tan(beta) via Slavnov-Taylor identities give rise to corrections that do not vanish in the limit where the supersymmetric particles are much heavier than the Higgs bosons. These additional contributions have important phenomenological implications as they can lead to potentially large supersymmetric effects in DeltaM_d and to a significant increase of DeltaM_s relative to the standard model prediction for a light pseudoscalar Higgs A0. We calculate all the missing one-loop pieces and combine them with the known effective non-holomorphic terms to obtain improved predictions for the B_(d,s)-anti-B_(d,s) mass differences DeltaM_(d,s) and the branching ratios of B_(d,s) -> mu+mu- in the large tan(beta) regime of the minimal supersymmetric standard model with minimal flavor violation.Comment: 8 pp; few typos corrected; version to appear in Phys. Rev.

    Validation of Kalman Filter alignment algorithm with cosmic-ray data using a CMS silicon strip tracker endcap

    Full text link
    A Kalman Filter alignment algorithm has been applied to cosmic-ray data. We discuss the alignment algorithm and an experiment-independent implementation including outlier rejection and treatment of weakly determined parameters. Using this implementation, the algorithm has been applied to data recorded with one CMS silicon tracker endcap. Results are compared to both photogrammetry measurements and data obtained from a dedicated hardware alignment system, and good agreement is observed.Comment: 11 pages, 8 figures. CMS NOTE-2010/00

    τππ0ντ\tau^{-} \to \pi^{-} \pi^{0} \nu_\tau decay in the extended NJL model

    Full text link
    The width of the decay τππ0ντ\tau^{-} \to \pi^{-} \pi^{0} \nu_\tau was calculated in the extended NJL model. Contact interaction of WW boson with pion pair as well as the contribution of the ρ\rho mesons in ground and first radial-exited states are taken into account. The sum of the contact diagram and diagram with intermediate ρ\rho meson in the ground state leads to the result which coincides with the result of the vector-dominance model. Our results are in satisfactory agreement with experimental data.Comment: 5 pages, 3 figures, 1 tabl

    Issues in determining alpha_s from hadronic tau decay and electroproduction data

    Full text link
    We discuss some key issues associated with duality-violating and non-perturbative OPE contributions to the theoretical representations of light quark current-current two-point functions and relevant to precision determinations of alpha_s from hadronic tau decay and electroproduction cross-section data. We demonstrate that analyses with an explicit representation of duality-violating effects are required to bring theoretical errors in such extractions under control, motivating the accompanying paper in these proceedings, which presents the results of such an analysis.Comment: 5 pages, 4 figures. Prepared for the Proceedings of the International Workshop on e+e- collisions from Phi to Psi (PHIPSI11), Sep. 19-22, 2011, BINP, Novosibirsk, Russi

    Dark Matter in split extended supersymmetry

    Get PDF
    We consider the split extended (N=2) supersymmetry scenario recently proposed by Antoniadis et al. [hep-ph/0507192] as a realistic low energy framework arising from intersecting brane models. While all scalar superpartners and charged gauginos are naturally at a heavy scale, the model low energy spectrum contains a Higgsino-like chargino and a neutralino sector made out of two Higgsino and two Bino states. We show that the lightest neutralino is a viable dark matter candidate, finding regions in the parameter space where its thermal relic abundance matches the latest determination of the density of matter in the Universe by WMAP. We also discuss dark matter detection strategies within this model: we point out that current data on cosmic-ray antimatter already place significant constraints on the model, while direct detection is the most promising technique for the future. Analogies and differences with respect to the standard split SUSY scenario based on the MSSM are illustrated.Comment: 14 pages, references added, typos corrected, matches with the published versio

    Further study on 5q configuration states in the chiral SU(3) quark model

    Full text link
    The structure of the 5q5q configuration states with strangeness S=+1{\cal{S}}=+1 is further studied in the chiral SU(3) quark model based on our previous work. We calculate the energies of fifteen low configurations of the 5q5q system, four lowest configurations of Jπ=1/2J^{\pi}={1/2}^- with 4q4q partition [4]orb(0s4)[31]σf[4]_{orb}(0s^4)[31]^{\sigma f}, four of Jπ=1/2+J^{\pi}={1/2}^+ with 4q4q partition [31]orb(0s30p)[4]σf[31]_{orb}(0s^30p)[4]^{\sigma f} and seven of Jπ=1/2+J^{\pi}={1/2}^+ with 4q4q partition [4]orb(0s30p)[31]σf[4]_{orb}(0s^30p)[31]^{\sigma f}. Some modifications are made in this further study, i.e., the orbital wave function is extended as an expansion of 4 different size harmonic oscillator forms; three various forms (quadratic, linear and error function form) of the color confinement potential are considered; the states with 4q4q partition [4]orb(0s30p)[31]σf[4]_{orb}(0s^30p)[31]^{\sigma f} are added, which are unnegligible in the Jπ=1/2+J^{\pi}={1/2}^+ case and were not considered in our previous paper, further the mixing between configurations [31]orb(0s30p)[4]σf[31]_{orb}(0s^30p)[4]^{\sigma f} and [4]orb(0s30p)[31]σf[4]_{orb}(0s^30p)[31]^{\sigma f} is also investigated. The results show that the T=0 state is still always the lowest one for both Jπ=1/2J^{\pi}={1/2}^- and Jπ=1/2+J^{\pi}={1/2}^+ states, and Jπ=1/2,T=0J^{\pi}={1/2}^-, T=0 state is always lower than that of Jπ=1/2+J^{\pi}={1/2}^+. All of these modifications can only offer several tens to hundred MeV effect, and the theoretical value of the lowest state is still about 245 MeV higher than the experimental mass of Θ+\Theta^+. It seems to be difficult to get the calculated mass close to the observed one with the reasonable parameters in the framework of the chiral SU(3) quark model when the model space is chosen as a 5q5q cluster.Comment: 16 page

    Predictions from Heavy New Physics Interpretation of the Top Forward-Backward Asymmetry

    Get PDF
    We derive generic predictions at hadron colliders from the large forward-backward asymmetry observed at the Tevatron, assuming the latter arises from heavy new physics beyond the Standard Model. We use an effective field theory approach to characterize the associated unknown dynamics. By fitting the Tevatron t \bar t data we derive constraints on the form of the new physics. Furthermore, we show that heavy new physics explaining the Tevatron data generically enhances at high invariant masses both the top pair production cross section and the charge asymmetry at the LHC. This enhancement can be within the sensitivity of the 8 TeV run, such that the 2012 LHC data should be able to exclude a large class of models of heavy new physics or provide hints for its presence. The same new physics implies a contribution to the forward-backward asymmetry in bottom pair production at low invariant masses of order a permil at most.Comment: 11 pages, 6 figures. v2: added remarks on EFT validity range, dijet bounds and UV completions; matches published versio

    Yukawa unification in SO(10) with light sparticle spectrum

    Get PDF
    We investigate supersymmetric SO(10) GUT model with \mu<0. The requirements of top-bottom-tau Yukawa unification, correct radiative electroweak symmetry breaking and agreement with the present experimental data may be met when the soft masses of scalars and gauginos are non-universal. We show how appropriate non-universalities can easily be obtained in the SO(10) GUT broken to the Standard Model. We discuss how values of BR(b-->s \gamma) and (g-2)_\mu simultaneously in a good agreement with the experimental data can be achieved in SO(10) model with \mu<0. In the region of the parameter space preferred by our analysis there are two main mechanisms leading to the LSP relic abundance consistent with the WMAP results. One is the co-annihilation with the stau and the second is the resonant annihilation via exchange of the Z boson or the light Higgs scalar. A very interesting feature of SO(10) models with negative \mu is that they predict relatively light sparticle spectra. Even the heaviest superpartners may easily have masses below 1.5 TeV in contrast to multi-TeV particles typical for models with positive \mu.Comment: 23 pages, 5 figure

    Analytic Results for Higgs Production in Bottom Fusion

    Get PDF
    We evaluate analytically the cross section for Higgs production plus one jet through bottom quark fusion. By considering the small pT limit we derive expressions for the resummation coefficients governing the structure of large logarithms, and compare these expressions with those available in the literature.Comment: 14 pages, 7 figure
    corecore