6,230 research outputs found

    Design of helicopter rotors to noise constraints

    Get PDF
    Results of the initial phase of a research project to study the design constraints on helicopter noise are presented. These include the calculation of nonimpulsive rotor harmonic and broadband hover noise spectra, over a wide range of rotor design variables and the sensitivity of perceived noise level (PNL) to changes in rotor design parameters. The prediction methodology used correlated well with measured whirl tower data. Application of the predictions to variations in rotor design showed tip speed and thrust as having the most effect on changing PNL

    Supporting Management lnteraction and Composition of Self-Managed Cells

    No full text
    Management in ubiquitous systems cannot rely on human intervention or centralised decision-making functions because systems are complex and devices are inherently mobile and cannot refer to centralised management applications for reconfiguration and adaptation directives. Management must be devolved, based on local decision-making and feedback control-loops embedded in autonomous components. Previous work has introduced a Self-Managed Cell (SMC) as an infrastructure for building ubiquitous applications. An SMC consists of a set of hardware and software components that implement a policy-driven feedback control-loop. This allows SMCs to adapt continually to changes in their environment or in their usage requirements. Typical applications include body-area networks for healthcare monitoring, and communities of unmanned autonomous vehicles (UAVs) for surveillance and reconnaissance operations. Ubiquitous applications are typically formed from multiple interacting autonomous components, which establish peer-to-peer collaborations, federate and compose into larger structures. Components must interact to distribute management tasks and to enforce communication strategies. This thesis presents an integrated framework which supports the design and the rapid establishment of policy-based SMC interactions by systematically composing simpler abstractions as building elements of a more complex collaboration. Policy-based interactions are realised – subject to an extensible set of security functions – through the exchanges of interfaces, policies and events, and our framework was designed to support the specification, instantiation and reuse of patterns of interaction that prescribe the manner in which these exchanges are achieved. We have defined a library of patterns that provide reusable abstractions for the structure, task-allocation and communication aspects of an interaction, which can be individually combined for building larger policy-based systems in a methodical manner. We have specified a formal model to ensure the rigorous verification of SMC interactions before policies are deployed in physical devices. A prototype has been implemented that demonstrates the practical feasibility of our framework in constrained resources

    Directed force chain networks and stress response in static granular materials

    Full text link
    A theory of stress fields in two-dimensional granular materials based on directed force chain networks is presented. A general equation for the densities of force chains in different directions is proposed and a complete solution is obtained for a special case in which chains lie along a discrete set of directions. The analysis and results demonstrate the necessity of including nonlinear terms in the equation. A line of nontrivial fixed point solutions is shown to govern the properties of large systems. In the vicinity of a generic fixed point, the response to a localized load shows a crossover from a single, centered peak at intermediate depths to two propagating peaks at large depths that broaden diffusively.Comment: 18 pages, 12 figures. Minor corrections to one figur

    Random trees between two walls: Exact partition function

    Full text link
    We derive the exact partition function for a discrete model of random trees embedded in a one-dimensional space. These trees have vertices labeled by integers representing their position in the target space, with the SOS constraint that adjacent vertices have labels differing by +1 or -1. A non-trivial partition function is obtained whenever the target space is bounded by walls. We concentrate on the two cases where the target space is (i) the half-line bounded by a wall at the origin or (ii) a segment bounded by two walls at a finite distance. The general solution has a soliton-like structure involving elliptic functions. We derive the corresponding continuum scaling limit which takes the remarkable form of the Weierstrass p-function with constrained periods. These results are used to analyze the probability for an evolving population spreading in one dimension to attain the boundary of a given domain with the geometry of the target (i) or (ii). They also translate, via suitable bijections, into generating functions for bounded planar graphs.Comment: 25 pages, 7 figures, tex, harvmac, epsf; accepted version; main modifications in Sect. 5-6 and conclusio

    PDEs with Compressed Solutions

    Get PDF
    Sparsity plays a central role in recent developments in signal processing, linear algebra, statistics, optimization, and other fields. In these developments, sparsity is promoted through the addition of an L1L^1 norm (or related quantity) as a constraint or penalty in a variational principle. We apply this approach to partial differential equations that come from a variational quantity, either by minimization (to obtain an elliptic PDE) or by gradient flow (to obtain a parabolic PDE). Also, we show that some PDEs can be rewritten in an L1L^1 form, such as the divisible sandpile problem and signum-Gordon. Addition of an L1L^1 term in the variational principle leads to a modified PDE where a subgradient term appears. It is known that modified PDEs of this form will often have solutions with compact support, which corresponds to the discrete solution being sparse. We show that this is advantageous numerically through the use of efficient algorithms for solving L1L^1 based problems.Comment: 21 pages, 15 figure

    Trends in retail sales of costume jewelry

    Full text link
    Thesis (M.B.A.)--Boston Universit

    Investigation of peak shapes in the MIBETA experiment calibrations

    Full text link
    In calorimetric neutrino mass experiments, where the shape of a beta decay spectrum has to be precisely measured, the understanding of the detector response function is a fundamental issue. In the MIBETA neutrino mass experiment, the X-ray lines measured with external sources did not have Gaussian shapes, but exhibited a pronounced shoulder towards lower energies. If this shoulder were a general feature of the detector response function, it would distort the beta decay spectrum and thus mimic a non-zero neutrino mass. An investigation was performed to understand the origin of the shoulder and its potential influence on the beta spectrum. First, the peaks were fitted with an analytic function in order to determine quantitatively the amount of events contributing to the shoulder, also depending on the energy of the calibration X-rays. In a second step, Montecarlo simulations were performed to reproduce the experimental spectrum and to understand the origin of its shape. We conclude that at least part of the observed shoulder can be attributed to a surface effect

    Human Like Adaptation of Force and Impedance in Stable and Unstable Tasks

    Get PDF
    Abstract—This paper presents a novel human-like learning con-troller to interact with unknown environments. Strictly derived from the minimization of instability, motion error, and effort, the controller compensates for the disturbance in the environment in interaction tasks by adapting feedforward force and impedance. In contrast with conventional learning controllers, the new controller can deal with unstable situations that are typical of tool use and gradually acquire a desired stability margin. Simulations show that this controller is a good model of human motor adaptation. Robotic implementations further demonstrate its capabilities to optimally adapt interaction with dynamic environments and humans in joint torque controlled robots and variable impedance actuators, with-out requiring interaction force sensing. Index Terms—Feedforward force, human motor control, impedance, robotic control. I

    Integrability of graph combinatorics via random walks and heaps of dimers

    Full text link
    We investigate the integrability of the discrete non-linear equation governing the dependence on geodesic distance of planar graphs with inner vertices of even valences. This equation follows from a bijection between graphs and blossom trees and is expressed in terms of generating functions for random walks. We construct explicitly an infinite set of conserved quantities for this equation, also involving suitable combinations of random walk generating functions. The proof of their conservation, i.e. their eventual independence on the geodesic distance, relies on the connection between random walks and heaps of dimers. The values of the conserved quantities are identified with generating functions for graphs with fixed numbers of external legs. Alternative equivalent choices for the set of conserved quantities are also discussed and some applications are presented.Comment: 38 pages, 15 figures, uses epsf, lanlmac and hyperbasic

    Своє – чуже. Дике – культурне. Базові структури міфологічних когнітивних моделей (до проблеми інваріанта і трансформації в інформаційному просторі)

    Get PDF
    Відтворення логічних законів міфологічних когнітивних структур, необхідне для виокремлення інваріантів у трансформованому емпіричному етнографічному масиві, зумовлює пошук базових когнітивних структур міфологічної доби. Базові когнітивні структури елементарних суспільств – бінарні символічні класифікації, які починають розгортатися із просторово-часової дихотомії: освоєний – неосвоєний простір, час архетипів – час їхньої реалізації. У статті аналізуються системи спорідненості дуально-родового суспільства, які, на думку авторки, використовувалися як засіб формалізації ієрархічної класифікації понять міфологічної доби.The reconstruction of the logical laws of mythological cognitive structures which is necessary to single out the invariants in the trasforming ethnographic material leads us to the search of basic cognitive structures of the mythological epoch. The basic cognitive structures of elementary societies are the binaric symbolical classifications which begin to develop from the spatialtemporal opposition: assimilated space – space which is not assimilated, the time of the archetypes – the time of their realization. In the article there is an analysis of a system of consanguinity of dual-clan society which on author's mind was used as means of formalization of the hierarchial classification of the mythological epoch concepts
    corecore