4,453 research outputs found

    Using survey participants to estimate the impact of nonparticipation

    Get PDF
    The authors evaluate the effectiveness of two models often used to measure the extent of nonparticipation bias in survey estimates. The first model establishes a "continuum of resistance" to being surveyed, placing people who were interviewed after one phone call on one end and nonparticipants on the other. The second assumes that there are "classes" of nonparticipants and that similar classes can be found among participants; it identifies groups of participants thought to be like nonparticipants and uses them as "proxies" to estimate the characteristics of nonparticipants. The authors use these models to examine how accurately they estimate the characteristics of nonparticipants and the impact of nonparticipation on survey estimates of means of child support awards and payments in Wisconsin. They find that neither model detects the true extent of nonparticipation bias.

    Boys Home at Reading, The

    Get PDF

    Rossby-wave turbulence in a rapidly rotating sphere

    Get PDF
    We use a quasi-geostrophic numerical model to study the turbulence of rotating flows in a sphere, with realistic Ekman friction and bulk viscous dissipation. The forcing is caused by the destabilization of an axisymmetric Stewartson shear layer, generated by differential rotation, resulting in a forcing at rather large scales. <P> The equilibrium regime is strongly anisotropic and inhomogeneous but exhibits a steep <i>m<sup>-5</sup></i> spectrum in the azimuthal (periodic) direction, at scales smaller than the injection scale. This spectrum has been proposed by Rhines for a Rossby wave turbulence. For some parameter range, we observe a turbulent flow dominated by a large scale vortex located in the shear layer, reminding us of the Great Red Spot of Jupiter

    A complementary approach to developing progress markers

    Get PDF

    Interactions between trivalent rare earth oxides and mixed [Hbet][Tf2N]:H2O systems in the development of a one-step process for the separation of light from heavy rare earth elements

    Get PDF
    The factors, including ionic liquid:water ratios, temperature, solvent:solute contact times, and the effect of dissolved rare earth metal ions on the [Hbet][Tf2N]:H2O thermometric phase change are determined to develop a process for separating the light from the heavy rare earth metal oxides in [Hbet][Tf2N]:H2O mixtures. The relative solubility data for three light (La2O3, Nd2O3, and Eu2O3), two heavy (Y2O3 and Yb2O3) rare earth metal oxides (REOs), and Gd2O3 at different temperatures and different solute:solvent contact times are reported for 1:1 [Hbet][Tf2N]:H2O. The light REOs dissolve easily at 57 °C with the La and Eu reaching maximum solubility within minutes while the heavy REOs have very low solubilities at this temperature with negligible amounts being dissolved for contact times less than 80 min. Gd2O3 dissolves more slowly than the La, Eu, and Nd oxides at 57 °C reaching maximum solubility only after 160 min. Changing the [Hbet][Tf2N]:H2O ratio from 1:1 to 16:1 increases the time required to dissolve the REOs. The times taken to reach maximum solubility decrease for all of the REOs up to 95 °C, resulting in the separations between the light and heavy rare earth elements, and Gd becoming less distinct. The presence of rare earth metal ions in [Hbet][Tf2N]:H2O results in a reduction in the upper critical solution temperature (UCST) of the solvent from 55.6 °C to as low as 31.8 °C with Gd3+. The best separation of light from heavy REOs is achieved at 57 °C but better separation of Gd from the light REOs is achieved at 40 °C, below the solvent UCST. The best conditions for a one-step separation of light from heavy REOs in [Hbet][Tf2N]:H2O mixtures is achieved with 1:1 [Hbet][Tf2N]:H2O at 57 °C using short contact oxide:solvent times (maximum 5 min). Separations of light from heavy REOs, in waste phosphor samples, containing La2O3, CeO2, Eu2O3, Gd2O3, Tb3O4 and Y2O3, are also achieved even in the presence of high concentrations of heavy REOs using short contact times. The use of [Hbet][Tf2N]:H2O as a means of separating light and heavy REOs is aided by the ease of recycling the solvent which can be recycled and reused at least five times with little loss of solvent quality or efficiency

    Use of extraction chromatography in the recycling of critical metals from thin film Leach solutions

    Get PDF
    Phosphors and optoelectronic thin film electronic device layers contain critical metals including lanthanides and indium that should be recycled. Solvent impregnated resins (SIRs) containing (i) DEHPA (ii) DODGAA and (iii) DODGAA with the ionic liquid [C4mim][Tf2N] are investigated in extraction chromatography methodologies to recover and separate critical metals from dilute solutions that model those leached from thin films. Optimum adsorption of metals occurs at pH 1.5-3.5 but is highest on DODGAA-[C4mim][Tf2N]. The recovery and separation of adsorbed metal species on the DODGAA-[C4mim][Tf2N] SIR resin from solutions containing the glass matrix ions, Ca(II) and Al(III), along with In(III) and Sn(IV) or lanthanide ions is achieved by elution with HNO3. Ca(II) and Al(III) are completely eluted with 0.1M HNO3 retaining the target critical metal species on the resin. Separation of In from Sn is achieved by elution of In(III) with 2.5M HNO3 and Sn(IV) with 5M acid. La is separated from the other lanthanides by elution of La(III) with 2.5M HNO3 and the remaining lanthanides with 5M acid. The SIR resins can be reused over a series of at least five cycles of loading, stripping, and rinsing to reduce reagent costs and achieve economic critical metal recovery by extraction chromatography

    Numerical Simulations of Dynamos Generated in Spherical Couette Flows

    Get PDF
    We numerically investigate the efficiency of a spherical Couette flow at generating a self-sustained magnetic field. No dynamo action occurs for axisymmetric flow while we always found a dynamo when non-axisymmetric hydrodynamical instabilities are excited. Without rotation of the outer sphere, typical critical magnetic Reynolds numbers RmcRm_c are of the order of a few thousands. They increase as the mechanical forcing imposed by the inner core on the flow increases (Reynolds number ReRe). Namely, no dynamo is found if the magnetic Prandtl number Pm=Rm/RePm=Rm/Re is less than a critical value Pmc∌1Pm_c\sim 1. Oscillating quadrupolar dynamos are present in the vicinity of the dynamo onset. Saturated magnetic fields obtained in supercritical regimes (either Re>2RecRe>2 Re_c or Pm>2PmcPm>2Pm_c) correspond to the equipartition between magnetic and kinetic energies. A global rotation of the system (Ekman numbers E=10−3,10−4E=10^{-3}, 10^{-4}) yields to a slight decrease (factor 2) of the critical magnetic Prandtl number, but we find a peculiar regime where dynamo action may be obtained for relatively low magnetic Reynolds numbers (Rmc∌300Rm_c\sim 300). In this dynamical regime (Rossby number Ro∌−1Ro\sim -1, spheres in opposite direction) at a moderate Ekman number (E=10−3E=10^{-3}), a enhanced shear layer around the inner core might explain the decrease of the dynamo threshold. For lower EE (E=10−4E=10^{-4}) this internal shear layer becomes unstable, leading to small scales fluctuations, and the favorable dynamo regime is lost. We also model the effect of ferromagnetic boundary conditions. Their presence have only a small impact on the dynamo onset but clearly enhance the saturated magnetic field in the ferromagnetic parts. Implications for experimental studies are discussed
    • 

    corecore