10,542 research outputs found

    Gap Domain Wall Fermions

    Full text link
    I demonstrate that the chiral properties of Domain Wall Fermions (DWF) in the large to intermediate lattice spacing regime of QCD, 1 to 2 GeV, are significantly improved by adding to the action two standard Wilson fermions with supercritical mass equal to the negative DWF five dimensional mass. Using quenched DWF simulations I show that the eigenvalue spectrum of the transfer matrix Hamiltonian develops a substantial gap and that the residual mass decreases appreciatively. Furthermore, I confirm that topology changing remains active and that the hadron spectrum of the added Wilson fermions is above the lattice cutoff and therefore is irrelevant. I argue that this result should also hold for dynamical DWF and furthermore that it should improve the chiral properties of related fermion methods.Comment: 12 pages of text, 14 figures, added sect.6 on topology and reference

    Can Light Echoes Account for the Slow Decay of Type IIn Supernovae?

    Get PDF
    The spectra of type IIn supernovae indicate the presence of apre-existing slow, dense circumstellar wind (CSW). If the CSW extends sufficiently far from the progenitor star, then dust formation should occur in the wind. The light from the supernova explosion will scatter off this dust and produce a light echo. Continuum emission seen after the peak will have contributions from both this echo as well as from the shock of the ejecta colliding with the CSW, with a fundamental question of which source dominates the continuum. We calculate the brightness of the light echo as a function of time for a range of dust shell geometries, and use our calculations to fit to the light curves of SN 1988Z and SN 1997ab, the two slowest declining IIn supernovae on record. We find that the light curves of both objects can be reproduced by the echo model. However, their rate of decay from peak, color at peak and their observed peak absolute magnitudes when considered together are inconsistent with the echo model. Furthermore, when the observed values of MB_{B} are corrected for the effects of dust scattering, the values obtained imply that these supernovae have unrealistically high luminosities. We conclude that light echoes cannot properly account for the slow decline seen in some IIn's, and that the shock interaction is likely to dominate the continuum emission.Comment: 15 pages, 9 figure

    A simple and surprisingly accurate approach to the chemical bond obtained from dimensional scaling

    Get PDF
    We present a new dimensional scaling transformation of the Schrodinger equation for the two electron bond. This yields, for the first time, a good description of the two electron bond via D-scaling. There also emerges, in the large-D limit, an intuitively appealing semiclassical picture, akin to a molecular model proposed by Niels Bohr in 1913. In this limit, the electrons are confined to specific orbits in the scaled space, yet the uncertainty principle is maintained because the scaling leaves invariant the position-momentum commutator. A first-order perturbation correction, proportional to 1/D, substantially improves the agreement with the exact ground state potential energy curve. The present treatment is very simple mathematically, yet provides a strikingly accurate description of the potential energy curves for the lowest singlet, triplet and excited states of H_2. We find the modified D-scaling method also gives good results for other molecules. It can be combined advantageously with Hartree-Fock and other conventional methods.Comment: 4 pages, 5 figures, to appear in Phys. Rev. Letter

    Dynamical Masses of Low Mass Stars in the Taurus and Ophiuchus Star Forming Regions

    Full text link
    We report new dynamical masses for 5 pre-main sequence (PMS) stars in the L1495 region of the Taurus star-forming region (SFR) and 6 in the L1688 region of the Ophiuchus SFR. Since these regions have VLBA parallaxes these are absolute measurements of the stars' masses and are independent of their effective temperatures and luminosities. Seven of the stars have masses <0.6<0.6 solar masses, thus providing data in a mass range with little data, and of these, 6 are measured to precision <5%< 5 \%. We find 8 stars with masses in the range 0.09 to 1.1 solar mass that agree well with the current generation of PMS evolutionary models. The ages of the stars we measured in the Taurus SFR are in the range 1-3 MY, and <1<1 MY for those in L1688. We also measured the dynamical masses of 14 stars in the ALMA archival data for Akeson~\&~Jensen's Cycle 0 project on binaries in the Taurus SFR. We find that the masses of 7 of the targets are so large that they cannot be reconciled with reported values of their luminosity and effective temperature. We suggest that these targets are themselves binaries or triples.Comment: 20 page

    Multiplicity of Galactic Cepheids from long-baseline interferometry~III. Sub-percent limits on the relative brightness of a close companion of δ\delta~Cephei

    Full text link
    We report new CHARA/MIRC interferometric observations of the Cepheid archetype δ\delta Cep, which aimed at detecting the newly discovered spectroscopic companion. We reached a maximum dynamic range ΔH\Delta H = 6.4, 5.8, and 5.2 mag, respectively within the relative distance to the Cepheid r<25r < 25 mas, 25<r<5025 < r < 50 mas and 50<r<10050 < r < 100 mas. Our observations did not show strong evidence of a companion. We have a marginal detection at 3σ3\sigma with a flux ratio of 0.21\%, but nothing convincing as we found other possible probable locations. We ruled out the presence of companion with a spectral type earlier than F0V, A1V and B9V, respectively for the previously cited ranges rr. From our estimated sensitivity limits and the Cepheid light curve, we derived lower-limit magnitudes in the HH band for this possible companion to be Hcomp>9.15,8.31H_\mathrm{comp} > 9.15, 8.31 and 7.77 mag, respectively for r<25r < 25 mas, 25<r<5025 < r < 50 mas and 50<r<10050 < r < 100 mas. We also found that to be consistent with the predicted orbital period, the companion has to be located at a projected separation <24< 24 mas with a spectral type later than a F0V star.Comment: Accepted for publication in MNRA

    Increased <sup>18</sup>F-FDG signal recovery from small physiological structures in digital PET/CT and application to the pituitary gland.

    Get PDF
    On conventional PET/CT, and under physiological conditions, the volume of the pituitary gland (PG) is small, and its metabolic activity is commonly comparable to the surrounding background level in &lt;sup&gt;18&lt;/sup&gt; F-FDG imaging. We compared the physiological &lt;sup&gt;18&lt;/sup&gt; F-FDG uptake of the PG in patients imaged with digital PET (dPET) and with conventional PET (cPET). Additionally, we performed phantom experiments to characterize signal recovery and detectability of small structures. We retrospectively included 10 dPET and 10 cPET patients and measured PG SUVmax, SUVmean and SUVratio (using cerebellum as reference). We imaged a modified NEMA/IEC phantom with both dPET and cPET (background activity 5 kBq/mL, and 3× and 5× higher concentrations in ∅2-20-mm spherical inserts). Mean recovery coefficients (RCmean) and signal-difference-to-noise-ratio (SDNR) were computed to assess lesion detectability. Patients imaged with dPET presented higher PG SUVmax and SUVratio (SUVR) compared to patients imaged with cPET (4.7 ± 2.05 vs. 2.9 ± 0.64, p = 0.004; and 0.62 ± 0.25 vs 0.39 ± 0.09, p = 0.029, respectively), while there was no difference for SUVmean (2.7 ± 1.32 vs 2.1 ± 0.44, p = 0.39). Thus, with a SUV readout scale of 0-5 g/mL, normal PG appeared abnormally hot with dPET, but not with cPET. Phantom evidenced higher RCmean in dPET compared to cPET. For both 3x and 5x measurements, lesion detectability according to size was systematically superior with dPET. In conclusion, patients imaged with dPET presented higher &lt;sup&gt;18&lt;/sup&gt; F-FDG physiological uptake of the PG as compared to patients imaged with cPET. These findings were supported by phantom experiments demonstrating superior signal recovery and small region detectability with dPET. Awareness of this new "higher" SUV of the normal &lt;sup&gt;18&lt;/sup&gt; F-FDG uptake of the PG is important to avoid potential pitfalls in image interpretation, notably in oncologic patients treated with immunotherapy, who are at increased risk to develop hypophysitis
    corecore