146 research outputs found

    Cooling of Hybrid Neutron Stars and Hypothetical Self-bound Objects with Superconducting Quark Cores

    Full text link
    We study the consequences of superconducting quark cores (with color-flavor-locked phase as representative example) for evolution of temperature profiles and the cooling curves in quark-hadron hybrid stars and in hypothetical self-bounded objects having no a hadron shell (quark core neutron stars). The quark gaps are varied from 0 to Δq=50\Delta_q =50 MeV. For hybrid stars we find time scales of 1÷51\div5, 5÷105\div10 and 50÷10050\div100 years for the formation of a quasistationary temperature distribution in the cases Δq=0\Delta_q =0, 0.1 MeV and \gsim 1 MeV, respectively. These time scales are governed by the heat transport within quark cores for large diquark gaps (\Delta \gsim 1 MeV) and within the hadron shell for small diquark gaps (\Delta \lsim 0.1 MeV). For quark core neutron stars we find a time scale 300\simeq 300 years for the formation of a quasistationary temperature distribution in the case \Delta \gsim 10 MeV and a very short one for \Delta \lsim 1 MeV. If hot young compact objects will be observed they can be interpreted as manifestation of large gap color superconductivity. Depending on the size of the pairing gaps, the compact star takes different paths in the lgTs{lg}T_s vs. lgt{lg} t diagram where TsT_s is the surface temperature. Compared to the corresponding hadronic model which well fits existing data the model for the hybrid neutron star (with a large diquark gap) shows too fast cooling. The same conclusion can be drawn for the corresponding self-bound objects.Comment: 8 pages, 4 figures, uses aa-package (included), accepted for A&

    On the Cooling of the Neutron Star in Cassiopeia A

    Full text link
    We demonstrate that the high-quality cooling data observed for the young neutron star in the supernova remnant Cassiopeia A over the past 10 years--as well as all other reliably known temperature data of neutron stars--can be comfortably explained within the "nuclear medium cooling" scenario. The cooling rates of this scenario account for medium-modified one-pion exchange in dense matter and polarization effects in the pair-breaking formations of superfluid neutrons and protons. Crucial for the successful description of the observed data is a substantial reduction of the thermal conductivity, resulting from a suppression of both the electron and nucleon contributions to it by medium effects. We also find that possibly in as little as about ten years of continued observation, the data may tell whether or not fast cooling processes are active in this neutron star.Comment: 4 pages, 3 figure

    Thermal Evolution of Neutron Stars in 2 Dimensions

    Full text link
    There are many factors that contribute to the breaking of the spherical symmetry of a neutron star. Most notably is rotation, magnetic fields, and/or accretion of matter from companion stars. All these phenomena influence the macroscopic structures of neutron stars, but also impact their microscopic compositions. The purpose of this paper is to investigate the cooling of rotationally deformed, two-dimensional (2D) neutron stars in the framework of general relativity theory, with the ultimate goal of better understand the impact of 2D effects on the thermal evolution of such objects. The equations that govern the thermal evolution of rotating neutron stars are presented in this paper. The cooling of neutron stars with different frequencies is computed self-consistently by combining a fully general relativistic 2D rotation code with a general relativistic 2D cooling code. We show that rotation can significantly influence the thermal evolution of rotating neutron stars. Among the major new aspects are the appearances of hot spots on the poles, and an increase of the thermal coupling times between the core and the crust of rotating neutron stars. We show that this increase is independent of the microscopic properties of the stellar core, but depends only on the frequency of the star.Comment: 8 pages, 6 figures, revised versio

    Differences in the Cooling Behavior of Strange Quark Matter Stars and Neutron Stars

    Full text link
    The general statement that hypothetical strange (quark matter) stars cool more rapidly than neutron stars is investigated in greater detail. It is found that the direct Urca process could be forbidden not only in neutron stars but also in strange stars. In this case, strange stars are slowly cooling, and their surface temperatures are more or less indistinguishable from those of slowly cooling neutron stars. Furthermore the case of enhanced cooling is reinvestigated. It shows that strange stars cool significantly more rapidly than neutron stars within the first 30\sim 30 years after birth. This feature could become particularly interesting if continued observation of SN 1987A would reveal the temperature of the possibly existing pulsar at its center.Comment: 9 pages, LaTeX (aas-style file), 2 ps-figures. To be published in ApJ Letter

    Timing evolution of accreting strange stars

    Get PDF
    It has been suggested that the QPO phenomenon in LMXB's could be explained when the central compact object is a strange star. In this work we investigate within a standard model for disk accretion whether the observed clustering of spin frequencies in a narrow band is in accordance with this hypothesis. We show that frequency clustering occurs for accreting strange stars when typical values of the parameters of magnetic field initial strength and decay time, accretion rate are chosen. In contrast to hybrid star accretion no mass clustering effect is found.Comment: 10 pages, 3 figures, version accepted for publication in New Astronom

    Time- and compartment-resolved proteome profiling of the extracellular niche in lung injury and repair

    Get PDF
    The extracellular matrix (ECM) is a key regulator of tissue morphogenesis and repair. However, its composition and architecture are not well characterized. Here, we monitor remodeling of the extracellular niche in tissue repair in the bleomycin-induced lung injury mouse model. Mass spectrometry quantified 8,366 proteins from total tissue and bronchoalveolar lavage fluid (BALF) over the course of 8 weeks, surveying tissue composition from the onset of inflammation and fibrosis to its full recovery. Combined analysis ofproteome, secretome, and transcriptome highlighted post-transcriptional events during tissue fibrogenesis and defined the composition of airway epithelial lining fluid. To comprehensively characterize the ECM, we developed a quantitative detergent solubility profiling (QDSP) method, which identified Emilin-2 and collagen-XXVIII as novel constituents of the provisional repair matrix. QDSP revealed which secreted proteins interact with the ECM, and showed drastically altered association of morphogens to the insoluble matrix upon injury. Thus, our proteomic systems biology study assigns proteins to tissue compartments and uncovers their dynamic regulation upon lung injury and repair, potentially contributing to the development of anti-fibrotic strategies

    How to identify a Strange Star

    Get PDF
    Contrary to young neutron stars, young strange stars are not subject to the r-mode instability which slows rapidly rotating, hot neutron stars to rotation periods near 10 ms via gravitational wave emission. Young millisecond pulsars are therefore likely to be strange stars rather than neutron stars, or at least to contain significant quantities of quark matter in the interior.Comment: 4 pages, 1 figur

    Intrinsic and extrinsic conduction contributions at nominally neutral domain walls in hexagonal manganites

    Full text link
    Conductive and electrostatic atomic force microscopy (cAFM and EFM) are used to investigate the electric conduction at nominally neutral domain walls in hexagonal manganites. The EFM measurements reveal a propensity of mobile charge carriers to accumulate at the nominally neutral domain walls in ErMnO3, which is corroborated by cAFM scans showing locally enhanced d.c. conductance. Our findings are explained based on established segregation enthalpy profiles for oxygen vacancies and interstitials, providing a microscopic model for previous, seemingly disconnected observations ranging from insulating to conducting domain wall behavior. In addition, we observe variations in conductance between different nominally neutral walls that we attribute to deviations from the ideal charge-neutral structure within the bulk, leading to a superposition of extrinsic and intrinsic contributions. Our study clarifies the complex transport properties at nominally neutral domain walls in hexagonal manganites and establishes new possibilities for tuning their electronic response based on oxidation conditions, opening the door for domain-wall based sensor technology.Comment: 5 pages, 3 figure

    Cooling of Neutron Stars: Two Types of Triplet Neutron Pairing

    Full text link
    We consider cooling of neutron stars (NSs) with superfluid cores composed of neutrons, protons, and electrons (assuming singlet-state pairing of protons, and triplet-state pairing of neutrons). We mainly focus on (nonstandard) triplet-state pairing of neutrons with the mJ=2|m_J| = 2 projection of the total angular momentum of Cooper pairs onto quantization axis. The specific feature of this pairing is that it leads to a power-law (nonexponential) reduction of the emissivity of the main neutrino processes by neutron superfluidity. For a wide range of neutron critical temperatures TcnT_{cn}, the cooling of NSs with the mJ=2|m_J| = 2 superfluidity is either the same as the cooling with the mJ=0m_J = 0 superfluidity, considered in the majority of papers, or much faster. The cooling of NSs with density dependent critical temperatures Tcn(ρ)T_{cn}(\rho) and Tcp(ρ)T_{cp}(\rho) can be imitated by the cooling of the NSs with some effective critical temperatures TcnT_{cn} and TcpT_{cp} constant over NS cores. The hypothesis of strong neutron superfluidity with mJ=2|m_J| = 2 is inconsistent with current observations of thermal emission from NSs, but the hypothesis of weak neutron superfluidity of any type does not contradict to observations.Comment: 10 pages, 6 figure

    Are strange stars distinguishable from neutron stars by their cooling behaviour?

    Get PDF
    The general statement that strange stars cool more rapidly than neutron stars is investigated in greater detail. It is found that the direct Urca process could be forbidden not only in neutron stars but also in strange stars. If so, strange stars would be slowly cooling and their surface temperatures would be more or less indistinguishable from those of slowly cooling neutron stars. The case of enhanced cooling is reinvestigated as well. It is found that strange stars cool significantly more rapidly than neutron stars within the first 30\sim 30 years after birth. This feature could become particularly interesting if continued observation of SN 1987A would reveal the temperature of the possibly existing pulsar at its centre.Comment: 10 pages, 3 ps-figures, to appear in the proceedings of the International Symposium on ''Strangeness in Quark Matter 1997``, April 14--18, Thera (Santorini), Hella
    corecore