169 research outputs found

    Implications of Hyperon Pairing for Cooling of Neutron Stars

    Get PDF
    The implications of hyperon pairing for the thermal evolution of neutron stars containing hyperons are investigated. The outcome of cooling simulations are compared for neutron star models composed only of nucleons and leptons, models including hyperons, and models including pairing of hyperons. We show that lambda and neutron pairing suppresses all possible fast neutrino emission processes in not too massive neutron stars. The inclusion of lambda pairing yields better agreement with X-ray observations of pulsars. Particularly, the surface temperatures deduced from X-ray observations within the hydrogen atmosphere model are more consistent with the thermal history of neutron stars containing hyperons, if the critical temperature for the onset of lambda and nucleon pairing is not too small.Comment: 7 pages, 3 figures. To be published in ApJL. The postscript and additional tables can be found at http://www.physik.uni-muenchen.de/sektion/suessmann/astro/cool/schaab.089

    Brightness constraint for cooling models of young neutron stars

    Full text link
    We study the systematics of neutron star cooling curves with three representative masses from the most populated interval of the estimated mass distribution for compact objects. The cooling simulations are made in the framework of the nuclear medium cooling (NMC) scenario using different combinations of possible nucleon-nucleon pairing gaps. Possible heating or enhanced cooling mechanisms in the crust are not considered. We define a constraint on the highest possible temperatures for a given age of young neutron stars and show that this limits the freedom of modeling pairing gaps and crust properties.Comment: 13 pages 2 figures 1 tabl

    Cooling of Hybrid Neutron Stars and Hypothetical Self-bound Objects with Superconducting Quark Cores

    Full text link
    We study the consequences of superconducting quark cores (with color-flavor-locked phase as representative example) for evolution of temperature profiles and the cooling curves in quark-hadron hybrid stars and in hypothetical self-bounded objects having no a hadron shell (quark core neutron stars). The quark gaps are varied from 0 to Δq=50\Delta_q =50 MeV. For hybrid stars we find time scales of 1÷51\div5, 5÷105\div10 and 50÷10050\div100 years for the formation of a quasistationary temperature distribution in the cases Δq=0\Delta_q =0, 0.1 MeV and \gsim 1 MeV, respectively. These time scales are governed by the heat transport within quark cores for large diquark gaps (\Delta \gsim 1 MeV) and within the hadron shell for small diquark gaps (\Delta \lsim 0.1 MeV). For quark core neutron stars we find a time scale 300\simeq 300 years for the formation of a quasistationary temperature distribution in the case \Delta \gsim 10 MeV and a very short one for \Delta \lsim 1 MeV. If hot young compact objects will be observed they can be interpreted as manifestation of large gap color superconductivity. Depending on the size of the pairing gaps, the compact star takes different paths in the lgTs{lg}T_s vs. lgt{lg} t diagram where TsT_s is the surface temperature. Compared to the corresponding hadronic model which well fits existing data the model for the hybrid neutron star (with a large diquark gap) shows too fast cooling. The same conclusion can be drawn for the corresponding self-bound objects.Comment: 8 pages, 4 figures, uses aa-package (included), accepted for A&

    On the Cooling of the Neutron Star in Cassiopeia A

    Full text link
    We demonstrate that the high-quality cooling data observed for the young neutron star in the supernova remnant Cassiopeia A over the past 10 years--as well as all other reliably known temperature data of neutron stars--can be comfortably explained within the "nuclear medium cooling" scenario. The cooling rates of this scenario account for medium-modified one-pion exchange in dense matter and polarization effects in the pair-breaking formations of superfluid neutrons and protons. Crucial for the successful description of the observed data is a substantial reduction of the thermal conductivity, resulting from a suppression of both the electron and nucleon contributions to it by medium effects. We also find that possibly in as little as about ten years of continued observation, the data may tell whether or not fast cooling processes are active in this neutron star.Comment: 4 pages, 3 figure

    Diquark Condensates and Compact Star Cooling

    Full text link
    The effect of color superconductivity on the cooling of quark stars and neutron stars with large quark cores is investigated. Various known and new quark-neutrino processes are studied. As a result, stars being in the color flavor locked (CFL) color superconducting phase cool down extremely fast. Quark stars with no crust cool down too rapidly in disagreement with X-ray data. The cooling of stars being in the N_f =2 color superconducting (2SC) phase with a crust is compatible with existing X-ray data. Also the cooling history of stars with hypothetic pion condensate nuclei and a crust does not contradict the data.Comment: 10 pages, 5 figures, accepted for publication in Ap

    Electronic bulk and domain wall properties in B-site doped hexagonal ErMnO3_3

    Get PDF
    Acceptor and donor doping is a standard for tailoring semiconductors. More recently, doping was adapted to optimize the behavior at ferroelectric domain walls. In contrast to more than a century of research on semiconductors, the impact of chemical substitutions on the local electronic response at domain walls is largely unexplored. Here, the hexagonal manganite ErMnO3_3 is donor doped with Ti4+^{4+}. Density functional theory calculations show that Ti4+^{4+} goes to the B-site, replacing Mn3+^{3+}. Scanning probe microscopy measurements confirm the robustness of the ferroelectric domain template. The electronic transport at both macro- and nanoscopic length scales is characterized. The measurements demonstrate the intrinsic nature of emergent domain wall currents and point towards Poole-Frenkel conductance as the dominant transport mechanism. Aside from the new insight into the electronic properties of hexagonal manganites, B-site doping adds an additional degree of freedom for tuning the domain wall functionality

    Direct Urca neutrino rate in colour superconducting quark matter

    Full text link
    If deconfined quark matter exists inside compact stars, the primary cooling mechanism is neutrino radiation via the direct Urca processes d->u+e+antinu_e and u+e->d+nu_e. Below a critical temperature, T_c, quark matter forms a colour superconductor, one possible manifestation of which is a condensate of quark Cooper pairs in an electric-charge neutralising background of electrons. We compute the neutrino emission rate from such a phase, including charged pair-breaking and recombination effects, and find that on a material temperature domain below T_c the pairing-induced suppression of the neutrino emission rate is not uniformly exponential. If gapless modes are present in the condensed phase, the emissivity at low temperatures is moderately enhanced above that of completely unpaired matter. The importance of charged current pair-breaking processes for neutrino emission both in the fully gapped and partially gapped regimes is emphasised.Comment: 5 pages, 2 figures; to appear in Phys. Rev. C (Rapid Comm.

    Neutral weak currents in nucleon superfluid Fermi liquids: Larkin-Migdal and Leggett approaches

    Full text link
    Neutrino emission in processes of breaking and formation of nucleon Cooper pairs is calculated in the framework of the Larkin-Migdal and the Leggett approaches to the description of superfluid Fermi liquids at finite temperatures. We explain peculiarities of both approaches and explicitly demonstrate that they lead to the same expression for the emissivity in pair breaking and formation processes.Comment: 24 pages, 3 figure

    Rearrangement of the Fermi Surface of Dense Neutron Matter and Direct Urca Cooling of Neutron Stars

    Get PDF
    It is proposed that a rearrangement of single-particle degrees of freedom may occur in a portion of the quantum fluid interior of a neutron star. Such a rearrangement is associated with the pronounced softening of the spin-isospin collective mode which, under increasing density, leads to pion condensation. Arguments and estimates based on fundamental relations of many-body theory show that one realization of this phenomenon could produce very rapid cooling of the star via a direct nucelon Urca process displaying a T5T^5 dependence on temperature.Comment: 8 pages, 2 figure

    Contact-free mapping of electronic transport phenomena of polar domains in SrMnO3 films

    Get PDF
    Under the terms of the Creative Commons Attribution license.-- et al.High-resolution mapping of electronic transport phenomena plays an increasingly important role for the characterization of ferroic domains and their functionality. At present, spatially resolved electronic transport data are commonly gained from local two-point measurements, collected in line-by-line scans with a conducting nanosized probe. Here, we introduce an innovative experimental approach based on low-energy electron microscopy. As a model case, we study polar domains of varying conductance in strained SrMnO3. By a direct comparison with conductive atomic force and electrostatic force microscopy, we reveal that the applied low-energy electron-microscopy experiment can be considered as an inverse I(V) measurement, providing access to the local electronic conductance with nanoscale resolution and short data-acquisition times in the order of 10-102 ms. Low-energy electrons thus hold yet unexplored application opportunities as a minimal-invasive probe for local electronic transport phenomena, opening a promising route towards spatially resolved, high-throughput sampling at the nanoscale.We thank HZB for the allocation of synchrotron beam time and we thankfully acknowledge financial support by HZB. Research at the ETH was financed in part by the SNF (Proposal No. 200021_149192). L. M., E. L., P. A. A., and J. A. P. acknowledge financial support from Ministerio de Economía y Competitividad under Project No. MAT2014-51982-C2 and Gobierno de Aragón under Project No. E26.Peer Reviewe
    corecore