515 research outputs found

    Study of the 12C+12C fusion reactions near the Gamow energy

    Get PDF
    The fusion reactions 12C(12C,a)20Ne and 12C(12C,p)23Na have been studied from E = 2.10 to 4.75 MeV by gamma-ray spectroscopy using a C target with ultra-low hydrogen contamination. The deduced astrophysical S(E)* factor exhibits new resonances at E <= 3.0 MeV, in particular a strong resonance at E = 2.14 MeV, which lies at the high-energy tail of the Gamow peak. The resonance increases the present non-resonant reaction rate of the alpha channel by a factor of 5 near T = 8x10^8 K. Due to the resonance structure, extrapolation to the Gamow energy E_G = 1.5 MeV is quite uncertain. An experimental approach based on an underground accelerator placed in a salt mine in combination with a high efficiency detection setup could provide data over the full E_G energy range.Comment: 4 Pages, 4 figures, accepted for publication in Phys. Rev. Let

    Algebraic totality, towards completeness

    Get PDF
    Finiteness spaces constitute a categorical model of Linear Logic (LL) whose objects can be seen as linearly topologised spaces, (a class of topological vector spaces introduced by Lefschetz in 1942) and morphisms as continuous linear maps. First, we recall definitions of finiteness spaces and describe their basic properties deduced from the general theory of linearly topologised spaces. Then we give an interpretation of LL based on linear algebra. Second, thanks to separation properties, we can introduce an algebraic notion of totality candidate in the framework of linearly topologised spaces: a totality candidate is a closed affine subspace which does not contain 0. We show that finiteness spaces with totality candidates constitute a model of classical LL. Finally, we give a barycentric simply typed lambda-calculus, with booleans B{\mathcal{B}} and a conditional operator, which can be interpreted in this model. We prove completeness at type BnB{\mathcal{B}}^n\to{\mathcal{B}} for every n by an algebraic method

    Mixing Bandt-Pompe and Lempel-Ziv approaches: another way to analyze the complexity of continuous-states sequences

    Get PDF
    In this paper, we propose to mix the approach underlying Bandt-Pompe permutation entropy with Lempel-Ziv complexity, to design what we call Lempel-Ziv permutation complexity. The principle consists of two steps: (i) transformation of a continuous-state series that is intrinsically multivariate or arises from embedding into a sequence of permutation vectors, where the components are the positions of the components of the initial vector when re-arranged; (ii) performing the Lempel-Ziv complexity for this series of `symbols', as part of a discrete finite-size alphabet. On the one hand, the permutation entropy of Bandt-Pompe aims at the study of the entropy of such a sequence; i.e., the entropy of patterns in a sequence (e.g., local increases or decreases). On the other hand, the Lempel-Ziv complexity of a discrete-state sequence aims at the study of the temporal organization of the symbols (i.e., the rate of compressibility of the sequence). Thus, the Lempel-Ziv permutation complexity aims to take advantage of both of these methods. The potential from such a combined approach - of a permutation procedure and a complexity analysis - is evaluated through the illustration of some simulated data and some real data. In both cases, we compare the individual approaches and the combined approach.Comment: 30 pages, 4 figure

    K^+ production in baryon-baryon and heavy-ion collisions

    Get PDF
    Kaon production cross sections in nucleon-nucleon, nucleon-delta and delta-delta interactions are studied in a boson exchange model. For the latter two interactions, the exchanged pion can be on-mass shell, only contributions due to a virtual pion are included via the Peierls method by taking into account the finite delta width. With these cross sections and also those for pion-baryon interactions, subthreshold kaon production from heavy ion collisions is studied in the relativistic transport model.Comment: to appear in Phys. Rev.

    Exploring language as the “in-between”

    Get PDF
    Assuming a performative notion of language, this contribution addresses how language functions as a symbolic means and asks for its function for the dialogical self. In accordance with a non-individualistic notion, individuals are related to each other within and by virtue of an in-between. This in-between is called “spacetime of language”: a dynamic evolving across time, perceived as linguistic forms with their chronotopology and the positionings of the performers (self as-whom to other as-whom). With respect to the linguistic forms, the specificity of language functioning is described by Bühler’s term of displacement. The effect of displacement is to generate sharedness by inducing a movement the partners follow, going beyond their actual, sensitive contact. Symbolic displacement, expanding Bühler’s notion, is particularly interesting with regard to the dialogical self: it permits the social construction of several perspectives on self, other, and reality—positions and voices informing the self’s performances

    Antikaon production in nucleon-nucleon reactions near threshold

    Get PDF
    The antikaon production cross section from nucleon-nucleon reactions near threshold is studied in a meson exchange model. We include both pion and kaon exchange, but neglect the interference between the amplitudes. In case of pion exchange the antikaon production cross section can be expressed in terms of the antikaon production cross section from a pion-nucleon interaction, which we take from the experimental data if available. Otherwise, a KK^*-resonance exchange model is introduced to relate the different reaction cross sections. In case of kaon exchange the antikaon production cross section is related to the elastic KNKN and KˉN\bar KN cross sections, which are again taken from experimental measurements. We find that the one-meson exchange model gives a satisfactory fit to the available data for the NNNNKKˉNN\to NNK\bar K cross section at high energies. We compare our predictions for the cross section near threshold with an earlier empirical parameterization and that from phase space models.Comment: 16 pages, LaTeX, 5 postscript figures included, submitted to Z. Phys.

    Structural Information in Two-Dimensional Patterns: Entropy Convergence and Excess Entropy

    Full text link
    We develop information-theoretic measures of spatial structure and pattern in more than one dimension. As is well known, the entropy density of a two-dimensional configuration can be efficiently and accurately estimated via a converging sequence of conditional entropies. We show that the manner in which these conditional entropies converge to their asymptotic value serves as a measure of global correlation and structure for spatial systems in any dimension. We compare and contrast entropy-convergence with mutual-information and structure-factor techniques for quantifying and detecting spatial structure.Comment: 11 pages, 5 figures, http://www.santafe.edu/projects/CompMech/papers/2dnnn.htm
    corecore