824 research outputs found

    The role of octadecanoids and functional mimics in soybean defense responses

    Get PDF
    Oxylipins of the jasmonate pathway and synthetic functional analogs have been analyzed for their elicitor like activities in an assay based on the induced accumulation of glyceollins, the phytoalexins of soybean (Glycine max L.), in cell suspension cultures of this plant. Jasmonic acid (JA) and its methyl ester showed weak phytoalexininducing activity when compared to an early jasmonate biosynthetic precursor, 12-oxophytodienoic acid (OPDA), as well as to the bacterial phytotoxin coronatine and certain 6-substituted indanoylLisoleucine methyl esters, which all were highly active. Interestingly, different octadecanoids and indanoyl conjugates induced the accumulation of transcripts of various defenserelated genes to different degrees, indicating distinct induction competencies. Therefore, these signaling compounds and mimics were further analyzed for their effects on signal transduction elements, such as the transient enhancement of the cytosolic Ca2+ concentration and MAP kinase activation, which are known to be initiated by a soybean pathogenderived {[}beta]glucan elicitor. In contrast to the {[}beta]glucan elicitor, none of the other compounds tested triggered these early signaling elements. Moreover, endogenous levels of OPDA and JA in soybean cells were shown to be unaffected after treatment with {[}beta]glucans. Thus, OPDA and JA, which are functionally mimicked by coronatine and a variety of 6-substituted derivatives of indanoylLisoleucine methyl ester, represent highly efficient signaling compounds of a lipidbased pathway not deployed in the {[}beta]glucan elicitorinitiated signal transduction

    Bandwidth renormalization due to the intersite Coulomb interaction

    Full text link
    The theory of correlated electrons is currently moving beyond the paradigmatic Hubbard UU, towards the investigation of intersite Coulomb interactions. Recent investigations have revealed that these interactions are relevant for the quantitative description of realistic materials. Physically, intersite interactions are responsible for two rather different effects: screening and bandwidth renormalization. We use a variational principle to disentangle the roles of these two processes and study how appropriate the recently proposed Fock treatment of intersite interactions is in correlated systems. The magnitude of this effect in graphene is calculated based on cRPA values of the intersite interaction. We also observe that the most interesting charge fluctuation phenomena actually occur at elevated temperatures, substantially higher than studied in previous investigations.Comment: New appendix on benzen

    Many-body effects on Cr(001) surfaces: An LDA+DMFT study

    Get PDF
    The electronic structure of the Cr(001) surface with its sharp resonance at the Fermi level is a subject of controversial debate of many experimental and theoretical works. To date, it is unclear whether the origin of this resonance is an orbital Kondo or an electron-phonon coupling effect. We have combined ab initio density functional calculations with dynamical mean-field simulations to calculate the orbitally resolved spectral function of the Cr(001) surface. The calculated orbital character and shape of the spectrum is in agreement with data from (inverse) photoemission experiments. We find that dynamic electron correlations crucially influence the surface electronic structure and lead to a low energy resonance in the dz2d_{z^2} and dxz/yzd_{xz/yz} orbitals. Our results help to reconvene controversial experimental results from (I)PES and STM measurements.Comment: 8 pages, 5 figure

    Direct programming of confined Surface Phonon Polariton Resonators using the plasmonic Phase-Change Material In3_3SbTe2_2

    Full text link
    Tailoring light-matter interaction is essential to realize nanophotonic components. It can be achieved with surface phonon polaritons (SPhPs), an excitation of photons coupled with phonons of polar crystals, which also occur in 2d materials such as hexagonal boron nitride or anisotropic crystals. Ultra-confined resonances are observed by restricting the SPhPs to cavities. Phase-change materials (PCMs) enable non-volatile programming of these cavities based on a change in the refractive index. Recently, the new plasmonic PCM In3_3SbTe2_2 (IST) was introduced which can be reversibly switched from an amorphous dielectric state to a crystalline metallic one in the entire infrared to realize numerous nanoantenna geometries. However, reconfiguring SPhP resonators to modify the confined polaritons modes remains elusive. Here, we demonstrate direct programming of confined SPhP resonators by phase-switching IST on top of a polar silicon carbide crystal and investigate the strongly confined resonance modes with scanning near-field optical microscopy. Reconfiguring the size of the resonators themselves result in enhanced mode confinements up to a value of λ/35\lambda/35. Finally, unconventional cavity shapes with complex field patterns are explored as well. This study is a first step towards rapid prototyping of reconfigurable SPhP resonators that can be easily transferred to hyperbolic and anisotropic 2d materials.Comment: Main Manuscript 16 pages, 5 figures, SI 15 page

    Sensing domain wall pinning in the longitudinal magnetoresistance of a two-dimensional electron gas

    Get PDF
    We investigate the sensing of domain wall pinning in thin Co wires positioned on top of a two-dimensional electron gas (2DEG) heterostructure by measuring the longitudinal resistance of the 2DEG as the magnetic field is swept, in an analogy to the Barkhausen effect. For comparison, we also measure the magnetoresistance of the ferromagnetic film in the same device in a subsequent sweep. Compared to the Hall measurements, the longitudinal measurement has the advantage of sensing magnetic activity over longer lengths, while compared to the measurement of the magnetoresistance in the ferromagnetic wire, it offers complementary information related to the pinning and unpinning of the domain wall, due to its sensitivity only to the out-of-plane magnetic field component.Fil: Kazazis, D.. No especifíca;Fil: Schüler, B.. Heinrich Heine University; AlemaniaFil: Granada, Mara. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Gennser, U.. No especifíca;Fil: Faini, G.. No especifíca;Fil: Cerchez, M.. Heinrich Heine University; AlemaniaFil: Heinzel, T.. Heinrich Heine University; Alemani
    corecore