689 research outputs found

    Detailed investigation of granulation processes using a fibre-optical probe and discrete element simulations

    Get PDF
    Spout fluidized beds are frequently used for the production of granules or particles through granulation, which are widely applied for example in the production of detergents, pharmaceuticals, food and fertilizers. Spout fluidized beds have a number of advantageous properties, such as high mobility of the particles preventing undesired agglomeration and enabling excellent heat transfer control. The particle growth mechanism in a spout fluidized bed as function of the particle-droplet interaction has a profound influence on the particle morphology and thus on the product quality. Nevertheless, little is known about the details of the granulation process. This is mainly due to the fact that it is not visually accessible. In this work we use fundamental, deterministic models to enable the detailed investigation of granulation behavior in a spout fluidized bed

    NLO QCD+EW predictions for 2â„“\ell2v diboson signatures at the LHC

    Get PDF
    We present next-to-leading order (NLO) calculations including QCD and electroweak (EW) corrections for 2ℓ\ell2ν diboson signatures with two opposite-charge leptons and two neutrinos. Specifically, we study the processes pp→e+μ−νeν‾μpp \to e^+\mu^-\nu_e\overline{\nu}_{\mu} and pp→e+e−νν‾pp \to e^+e^-\nu\overline{\nu}, including all relevant off-shell diboson channels, W+W−,ZZ,γZW^+W^-, ZZ, \gamma Z, as well as non-resonant contributions. Photon-induced processes are computed at NLO EW, and we discuss subtle differences related to the definition and the renormalisation of the coupling α for processes with initial- and final-state photons. All calculations are performed within the automated Munich/Sherpa+OpenLoops frameworks, and we provide numerical predictions for the LHC at 13 TeV. The behaviour of the corrections is investigated with emphasis on the high-energy regime, where NLO EW effects can amount to tens of percent due to large Sudakov logarithms. The interplay between WW WW and ZZZZ contributions to the same-flavour channel, pp→e+e−νν‾pp \to e^+e^-\nu\overline{\nu}, is discussed in detail, and a quantitative analysis of photon-induced contributions is presented. Finally, we consider approximations that account for all sources of large logarithms, at high and low energy, by combining virtual EW corrections with a YFS soft-photon resummation or a QED parton shower

    Discrete element modeling and fibre optical measurements for fluidized bed spray granulation

    Get PDF
    Spout fluidized beds are frequently used for the production of granules or\ud particles through granulation. The products find application in a large variety of\ud applications, for example detergents, fertilizers, pharmaceuticals and food. Spout fluidized\ud beds have a number of advantageous properties, such as a high mobility of the particles,\ud which prevents undesired agglomeration and yields excellent heat transfer properties. The\ud particle growth mechanism in a spout fluidized bed as function of particle-droplet\ud interaction has a profound influence on the particle morphology and thus on the product\ud quality. Nevertheless, little is known about the details of the granulation process. This is\ud mainly due to the fact that the granulation process is not visually accessible. In this work\ud we use fundamental, deterministic models to enable the detailed investigation of\ud granulation behaviour in a spout fluidized bed. A discrete element model is used\ud describing the dynamics of the continuous gas-phase and the discrete droplets and\ud particles. For each element momentum balances are solved. The momentum transfer\ud among each of the three phases is described in detail at the level of individual elements.\ud The results from the discrete element model simulations are compared with local\ud measurements of particle volume fractions as well as particle velocities by using a novel\ud fibre optical probe in a fluidized bed of 400 mm I.D. Simulations and experiments were\ud carried out for two different cases using Geldart B type aluminium oxide particles: a\ud freely bubbling fluidized bed and a spout fluidized bed with the presence of droplets. It is\ud demonstrated how the discrete element model can be used to obtain information about the\ud interaction of the discrete phases, i.e. the growth zone in a spout fluidized bed. Eventually\ud this kind of information can be used to obtain closure information required in more coarse\ud grained model

    Comparison of fibre optical measurements and discrete element simulations for the study of granulation in a spout fluidized bed

    Get PDF
    Spout fluidized beds are frequently used for the production of granules or particles through granulation. The products find application in a large variety of applications, for example detergents, fertilizers, pharmaceuticals and food. Spout fluidized beds have a number of advantageous properties, such as a high mobility of the particles, which prevents undesired agglomeration and yields excellent heat transfer properties. The particle growth mechanism in a spout fluidized bed as function of particle-droplet interaction has a profound influence on the particle morphology and thus on the product quality. Nevertheless, little is known about the details of the granulation process. This is mainly due to the fact that the granulation process is not visually accessible. In this work we use fundamental, deterministic models to enable the detailed investigation of granulation behaviour in a spout fluidized bed. A discrete element model is used describing the dynamics of the continuous gas-phase and the discrete droplets and particles. For each element momentum balances are solved. The momentum transfer among each of the three phases is described in detail at the level of individual elements. The results from the discrete element model simulations are compared with local measurements of particle volume fractions as well as particle velocities by using a novel fibre optical probe in a fluidized bed of 400 mm I.D. Simulations and experiments were carried out for three different cases using Geldart B type aluminium oxide particles: a freely bubbling fluidized bed; a spout fluidized bed without the presence of droplets and a spout fluidized bed with the presence of droplets. It is demonstrated how the discrete element model can be used to obtain information about the interaction of the discrete phases, i.e. the growth zone in a spout fluidized bed. Eventually this kind of information can be used to obtain closure information required in more coarse grained models

    Adaptation Algorithm and Theory Based on Generalized Discrepancy

    Full text link
    We present a new algorithm for domain adaptation improving upon a discrepancy minimization algorithm previously shown to outperform a number of algorithms for this task. Unlike many previous algorithms for domain adaptation, our algorithm does not consist of a fixed reweighting of the losses over the training sample. We show that our algorithm benefits from a solid theoretical foundation and more favorable learning bounds than discrepancy minimization. We present a detailed description of our algorithm and give several efficient solutions for solving its optimization problem. We also report the results of several experiments showing that it outperforms discrepancy minimization

    Formation of phase lags at the cyclotron energies in the pulse profiles of magnetized, accreting neutron stars

    Get PDF
    Context: Accretion-powered X-ray pulsars show highly energy-dependent and complex pulse-profile morphologies. Significant deviations from the average pulse profile can appear, in particular close to the cyclotron line energies. These deviations can be described as energy-dependent phase lags, that is, as energy-dependent shifts of main features in the pulse profile. Aims: Using a numerical study we explore the effect of cyclotron resonant scattering on observable, energy-resolved pulse profiles. Methods: We generated the observable emission as a function of spin phase, using Monte Carlo simulations for cyclotron resonant scattering and a numerical ray-tracing routine accounting for general relativistic light-bending effects on the intrinsic emission from the accretion columns. Results: We find strong changes in the pulse profile coincident with the cyclotron line energies. Features in the pulse profile vary strongly with respect to the average pulse profile with the observing geometry and shift and smear out in energy additionally when assuming a non-static plasma. Conclusions: We demonstrate how phase lags at the cyclotron energies arise as a consequence of the effects of angular redistribution of X-rays by cyclotron resonance scattering in a strong magnetic field combined with relativistic effects. We also show that phase lags are strongly dependent on the accretion geometry. These intrinsic effects will in principle allow us to constrain a system's accretion geometry.Comment: 4 pages, 4 figures; updated reference lis

    Cyclotron resonant scattering feature simulations. I. Thermally averaged cyclotron scattering cross sections, mean free photon-path tables, and electron momentum sampling

    Get PDF
    Electron cyclotron resonant scattering features (CRSFs) are observed as absorption-like lines in the spectra of X-ray pulsars. A significant fraction of the computing time for Monte Carlo simulations of these quantum mechanical features is spent on the calculation of the mean free path for each individual photon before scattering, since it involves a complex numerical integration over the scattering cross section and the (thermal) velocity distribution of the scattering electrons. We aim to numerically calculate interpolation tables which can be used in CRSF simulations to sample the mean free path of the scattering photon and the momentum of the scattering electron. The tables also contain all the information required for sampling the scattering electron's final spin. The tables were calculated using an adaptive Simpson integration scheme. The energy and angle grids were refined until a prescribed accuracy is reached. The tables are used by our simulation code to produce artificial CRSF spectra. The electron momenta sampled during these simulations were analyzed and justified using theoretically determined boundaries. We present a complete set of tables suited for mean free path calculations of Monte Carlo simulations of the cyclotron scattering process for conditions expected in typical X-ray pulsar accretion columns (0.01<B/B_{crit}<=0.12, where B_{crit}=4.413x10^{13} G and 3keV<=kT<15keV). The sampling of the tables is chosen such that the results have an estimated relative error of at most 1/15 for all points in the grid. The tables are available online at http://www.sternwarte.uni-erlangen.de/research/cyclo.Comment: A&A, in pres

    Foliar lead uptake by lettuce exposed to atmospheric fallouts

    Get PDF
    Metal uptake by plants occurs by soil−root transfer but also by direct transfer of contaminants from the atmosphere to the shoots. This second pathway may be particularly important in kitchen gardens near industrial plants. The mechanisms of foliar uptake of lead by lettuce (Lactuca sativa) exposed to the atmospheric fallouts of a lead-recycling plant were studied. After 43 days of exposure, the thoroughly washed leaves contained 335 ± 50 mg Pb kg−1 (dry weight). Micro-X-ray fluorescence mappings evidenced Pb-rich spots of a few hundreds of micrometers in diameter located in necrotic zones. These spots were more abundant at the base of the central nervure. Environmental scanning electron microscopy coupled with energy dispersive X-ray microanalysis showed that smaller particles (a few micrometers in diameter) were also present in other regions of the leaves, often located beneath the leaf surface. In addition, submicrometric particles were observed inside stomatal openings. Raman microspectrometry analyses of the leaves identified smelter-originated Pb minerals but also secondary phases likely resulting from the weathering of original particles. On the basis of these observations, several pathways for foliar lead uptake are discussed. A better understanding of these mechanisms may be of interest for risk assessment of population exposure to atmospheric metal contamination

    The XMM-Newton view of the Crab

    Get PDF
    Aims. We discuss the current X-ray view of the Crab Nebula and Pulsar, summarising our analysis of observations of the source with the EPIC-pn camera on board the XMM-Newton observatory. Different modes of EPIC-pn were combined in order to yield a complete scenario of the spectral properties of the Crab resolved in space and time (pulse phase). In addition we give a description of the special EPIC-pn Burst mode and guidance for data reduction in that mode. Methods. We analysed spectra for the nebula and pulsar separately in the 0.6−12.0 keV energy band. All data were processed with the SAS 6.0.0 XMM-Newton Scientific Analysis System package; models were fitted to the data with XSPEC 11. The high time resolution of EPIC-pn in its Burst mode (7 μs) was used for a phase resolved analysis of the pulsar spectrum, after determination of the period with epoch folding techniques. Data from the SmallWindow mode were processed and corrected for pile-up allowing for spectroscopy simultaneously resolved in space and time. Results. The spatial variation of the spectrum over the entire region of the Crab shows a gradual spectral softening from the inner pulsar region to the outer nebula region with a variation in photon index, Γ, from 2.0 to 2.4. Pulse phase resolved spectroscopy of the Crab Pulsar reveals a phase dependent modulation of the photon index in form of a significant hardening of the spectrum in the inter-peak phase from Γ = 1.7 during the pulse peak to Γ = 1.5

    A comparative study of Higgs boson production from vector-boson fusion

    Get PDF
    The data taken in Run II at the Large Hadron Collider have started to probe Higgs boson production at high transverse momentum. Future data will provide a large sample of events with boosted Higgs boson topologies, allowing for a detailed understanding of electroweak Higgs boson plus two-jet production, and in particular the vector-boson fusion mode (VBF). We perform a detailed comparison of precision calculations for Higgs boson production in this channel, with particular emphasis on large Higgs boson transverse momenta, and on the jet radius dependence of the cross section. We study fixed-order predictions at next-to-leading order and next-to-next-to-leading order QCD, and compare the results to NLO plus parton shower (NLOPS) matched calculations. The impact of the NNLO corrections on the central predictions is mild, with inclusive scale uncertainties of the order of a few percent, which can increase with the imposition of kinematic cuts. We find good agreement between the fixed-order and matched calculations in non-Sudakov regions, and the various NLOPS predictions also agree well in the Sudakov regime. We analyze backgrounds to VBF Higgs boson production stemming from associated production, and from gluon-gluon fusion. At high Higgs boson transverse momenta, the ∆yjj and/or mjj cuts typically used to enhance the VBF signal over background lead to a reduced efficiency. We examine this effect as a function of the jet radius and using different definitions of the tagging jets. QCD radiative corrections increase for all Higgs production modes with increasing Higgs boson pT, but the proportionately larger increase in the gluon fusion channel results in a decrease of the gluon-gluon fusion background to electroweak Higgs plus two jet production upon requiring exclusive two-jet topologies. We study this effect in detail and contrast in particular a central jet veto with a global jet multiplicity requirement
    • …
    corecore