35 research outputs found

    Locomotion controls spatial integration in mouse visual cortex.

    Get PDF
    Growing evidence indicates that responses in sensory cortex are modulated by factors beyond direct sensory stimulation. In primary visual cortex (V1), for instance, responses increase with locomotion. Here we show that this increase is accompanied by a profound change in spatial integration. We recorded from V1 neurons in head-fixed mice placed on a spherical treadmill. We characterized spatial integration and found that the responses of most neurons were suppressed by large stimuli. As in primates, this surround suppression increased with stimulus contrast. These effects were captured by a divisive normalization model, where the numerator originates from a central region driving the neuron and the denominator originates from a larger suppressive field. We then studied the effects of locomotion and found that it markedly reduced surround suppression, allowing V1 neurons to integrate over larger regions of visual space. Locomotion had two main effects: it increased spontaneous activity, and it weakened the suppressive signals mediating normalization, relative to the driving signals. We conclude that a fundamental aspect of visual processing, spatial integration, is controlled by an apparently unrelated factor, locomotion. This control might operate through the mechanisms that are in place to deliver surround suppression

    Coupled variability in primary sensory areas and the hippocampus during spontaneous activity

    Get PDF
    The cerebral cortex is an anatomically divided and functionally specialized structure. It includes distinct areas, which work on different states over time. The structural features of spiking activity in sensory cortices have been characterized during spontaneous and evoked activity. However, the coordination among cortical and sub-cortical neurons during spontaneous activity across different states remains poorly characterized. We addressed this issue by studying the temporal coupling of spiking variability recorded from primary sensory cortices and hippocampus of anesthetized or freely behaving rats. During spontaneous activity, spiking variability was highly correlated across primary cortical sensory areas at both small and large spatial scales, whereas the cortico-hippocampal correlation was modest. This general pattern of spiking variability was observed under urethane anesthesia, as well as during waking, slow-wave sleep and rapid-eye-movement sleep, and was unchanged by novel stimulation. These results support the notion that primary sensory areas are strongly coupled during spontaneous activity.project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). NAPV was supported by Centro Universitario do Rio Grande do Norte, Champalimaud Foundation, and Brazilian National Council for Scientific and Technological Development (CNPq, Grant 249991/2013-6), CC-S (SFRH/BD/51992/2012). AJR (IF/00883/2013). SR by UFRN, CNPq (Research Productivity Grant 308775/2015-5), and S. Paulo Research Foundation FAPESP - Center for Neuromathematics (Grant 2013/07699-0)info:eu-repo/semantics/publishedVersio

    A machine learning approach to predict perceptual decisions: an insight into face pareidolia

    Get PDF
    The perception of an external stimulus not only depends upon the characteristics of the stimulus but is also influenced by the ongoing brain activity prior to its presentation. In this work, we directly tested whether spontaneous electrical brain activities in prestimulus period could predict perceptual outcome in face pareidolia (visualizing face in noise images) on a trial-by-trial basis. Participants were presented with only noise images but with the prior information that some faces would be hidden in these images, while their electrical brain activities were recorded; participants reported their perceptual decision, face or no-face, on each trial. Using differential hemispheric asymmetry features based on large-scale neural oscillations in a machine learning classifier, we demonstrated that prestimulus brain activities could achieve a classification accuracy, discriminating face from no-face perception, of 75% across trials. The time–frequency features representing hemispheric asymmetry yielded the best classification performance, and prestimulus alpha oscillations were found to be mostly involved in predicting perceptual decision. These findings suggest a mechanism of how prior expectations in the prestimulus period may affect post-stimulus decision making

    CHARGE syndrome:a review of the immunological aspects

    No full text
    CHARGE syndrome is caused by a dominant variant in the CHD7 gene. Multiple organ systems can be affected because of haploinsufficiency of CHD7 during embryonic development. CHARGE syndrome shares many clinical features with the 22q11.2 deletion syndrome. Immunological abnormalities have been described, but are generally given little attention in studies on CHARGE syndrome. However, structured information on immunological abnormalities in CHARGE patients is necessary to develop optimal guidelines for diagnosis, treatment and follow-up in these patients. Here, we provide an overview of the current literature on immunological abnormalities in CHARGE syndrome. We also explore immunological abnormalities in comparable multiple congenital anomaly syndromes to identify common immunological phenotypes and genetic pathways that might regulate the immune system. Finally, we aim to identify gaps in our knowledge on the immunological aspects in CHARGE syndrome that need further study

    Dynamic change of global and local information processing in Propofol-induced loss and recovery of consciousness

    Get PDF
    Whether unique to humans or not, consciousness is a central aspect of our experience of the world. The neural fingerprint of this experience, however, remains one of the least understood aspects of the human brain. In this paper we employ graph-theoretic measures and support vector machine classification to assess, in 12 healthy volunteers, the dynamic reconfiguration of functional connectivity during wakefulness, propofol-induced sedation and loss of consciousness, and the recovery of wakefulness. Our main findings, based on resting-state fMRI, are three-fold. First, we find that propofol-induced anesthesia does not bear differently on long-range versus short-range connections. Second, our multi-stage design dissociated an initial phase of thalamo-cortical and cortico-cortical hyperconnectivity, present during sedation, from a phase of cortico-cortical hypoconnectivity, apparent during loss of consciousness. Finally, we show that while clustering is increased during loss of consciousness, as recently suggested, it also remains significantly elevated during wakefulness recovery. Conversely, the characteristic path length of brain networks (i.e., the average functional distance between any two regions of the brain) appears significantly increased only during loss of consciousness, marking a decrease of global information-processing efficiency uniquely associated with unconsciousness. These findings suggest that propofol-induced loss of consciousness is mainly tied to cortico-cortical and not thalamo-cortical mechanisms, and that decreased efficiency of information flow is the main feature differentiating the conscious from the unconscious brain

    Evolving Concepts of 'Hierarchy' in Systems Neuroscience

    Get PDF
    The notion of “hierarchy” is one of the most commonly posited organizational principles in systems neuroscience. To this date, however, it has received little philosophical analysis. This is unfortunate, because the general concept of hierarchy ranges over two approaches with distinct empirical commitments, and whose conceptual relations remain unclear. We call the first approach the “representational hierarchy” view, which posits that an anatomical hierarchy of feed-forward, feed-back, and lateral connections underlies a signal processing hierarchy of input-output relations. Because the representational hierarchy view holds that unimodal sensory representations are subsequently elaborated into more categorical and rule-based ones, it is committed to an increasing degree of abstraction along the hierarchy. The second view, which we call “topological hierarchy", is not committed to different representational functions or degrees of abstraction at different levels. Topological approaches instead posit that the hierarchical level of a part of the brain depends on how central it is to the pattern of connections in the system. Based on the current evidence, we argue that three conceptual relations between the two approaches are possible: topological hierarchies could substantiate the traditional representational hierarchy, conflict with it, or contribute to a plurality of approaches needed to understand the organization of the brain. By articulating each of these possibilities, our analysis attempts to open a conceptual space in which further neuroscientific and philosophical reasoning about neural hierarchy can proceed
    corecore