18 research outputs found

    Preserving Charge and Oxidation State of Au(III) Ions in an Agent-Functionalized Nanocrystal Model System

    Get PDF
    Supporting functional molecules on crystal facets is an established technique in nanotechnology. To preserve the original activity of ionic metallorganic agents on a supporting template, conservation of the charge and oxidation state of, the active center is indispensable. We. present a model system of a metallorganic agent that, indeed, fulfills this design criterion on a technologically relevant metal support With potential Impact on Au(III)-porphyrin-functionalized nanoparticles for an improved anticancer-drug delivery. Employing scanning tunneling microscopy and -spectroscopy in combination with photoemission spectroscopy,we clarify at the single-molecule level the underlying mechanisms of this exceptional adsorption mode. It is based on the balance between a high-energy oxidation state and an electrostatic screening-response of the surface (image charge). Modeling with first principles methods reveals submolecular details of the metal-ligand bonding interaction and completes the study by providing an Illustrative electrostatic.. model relevant for ionic metalorganic agent molecules, in general

    Unraveling the Oxidation and Spin State of Mn Corrole through X ray Spectroscopy and Quantum Chemical Analysis

    No full text
    The interplay between Mn ions and corrole ligands gives rise to complex scenarios regarding the metal centers’ electronic properties expressing a range of high oxidation states and spin configurations. The resulting potential of Mn–corroles for applications such as catalysts or fuel cells has recently been demonstrated. However, despite being crucial for their functionality, the electronic structure of Mn–corroles is often hardly accessible with traditional techniques and thus is still under debate, especially under interfacial conditions. Here, we unravel the electronic ground state of the prototypical Mn-5,10,15-tris­(pentafluorophenyl)­corrole complex through X-ray spectroscopic investigations of ultrapure thin films and quantum chemical analysis. The theory-based interpretation of Mn photoemission and absorption fine structure spectra (3s and 2p and L2,3-edge, respectively) evidence a Mn­(III) oxidation state with an S = 2 high-spin configuration. By referencing density functional theory calculations with the experiments, we lay the basis for extending our approach to the characterization of complex interfaces

    Biofunctionalized conductive polymers enable efficient CO2 electroreduction

    No full text
    Selective electrocatalysts are urgently needed for carbon dioxide (CO2) reduction to replace fossil fuels with renewable fuels, thereby closing the carbon cycle. To date, noble metals have achieved the best performance in energy yield and faradaic efficiency and have recently reached impressive electrical-to-chemical power conversion efficiencies. However, the scarcity of precious metals makes the search for scalable, metal-free, CO2 reduction reaction (CO2RR) catalysts all the more important. We report an all-organic, that is, metal-free, electrocatalyst that achieves impressive performance comparable to that of best-in-class Ag electrocatalysts. We hypothesized that polydopamine-a conjugated polymer whose structure incorporates hydrogen-bonded motifs found in enzymes-could offer the combination of efficient electrical conduction, together with rendered active catalytic sites, and potentially thereby enable CO2RR. Only by developing a vapor-phase polymerization of polydopamine were we able to combine the needed excellent conductivity with thin film-based processing. We achieve catalytic performance with geometric current densities of 18 mA cm(-2) at 0.21 V overpotential (-0.86 V versus normal hydrogen electrode) for the electrosynthesis of C1 species (carbon monoxide and formate) with continuous 16-hour operation at >80% faradaic efficiency. Our catalyst exhibits lower overpotentials than state-of-the-art formate-selective metal electrocatalysts (for example, 0.5 V for Ag at 18 mA cm(-1)). The results confirm the value of exploiting hydrogen-bonded sequences as effective catalytic centers for renewable and cost-efficient industrial CO2RR applications

    X ray Spectroscopy of Thin Film Free Base Corroles A Combined Theoretical and Experimental Characterization

    No full text
    Corrole compounds attract increasing interest due to their potential to stabilize high-valent metal states. X-ray spectroscopy is a powerful tool for the investigation and development of functional interfaces. For corrolic species, however, the required reference data are missing. Here, we employ a multitechnique X-ray investigation of thin films of the prototypical free-base 5,10,15-tris­(pentafluorophenyl)­corrole (3H-TpFPC) grown on the Ag(111) surface under ultrahigh vacuum conditions. Ultrapure corrole multilayer samples are prepared and characterized by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. In parallel, the X-ray fingerprints are simulated using the continued-fraction approach within density functional theory (DFT) for extended, (quasi-)­periodic molecular structures. An excellent agreement between experimental and theoretical spectra enables a thorough interpretation of the detailed spectral features and proves an accurate description of the free-base corrole electronic structure within the present DFT approach. The present study provides X-ray spectroscopic references for all relevant core-level regions and absorption edges of intact molecular species and, thus, represents an ideal starting point for the comprehensive understanding of the complex chemistry of corroles in the adsorbed state toward the development of related functional interfaces

    On Surface Site Selective Cyclization of Corrole Radicals

    No full text
    Radical cyclization is among the most powerful and versatile reactions for constructing mono- and polycyclic systems, but has, to date, remained unexplored in the context of on-surface synthesis. We report the controlled on-surface synthesis of stable corrole radicals on Ag(111) <i>via</i> site-specific dehydrogenation of a pyrrole N–H bond in the 5,10,15-tris­(pentafluoro-phenyl)-corrole triggered by annealing at 330 K under ultrahigh-vacuum conditions. We reveal a thermally induced regioselective cyclization reaction mediated by a radical cascade and resolve the reaction mechanism of the pertaining cyclodefluorination reaction at the single-molecule level. <i>Via</i> intramolecularly resolved probing of the radical-related Kondo signature, we achieve real space visualization of the distribution of the unpaired electron density over specific sites within the corrole radical. Annealing to 550 K initiates intermolecular coupling reactions, producing an extended π-conjugated corrole system
    corecore