257 research outputs found

    Mechanistic interrogation of combination Bevacizumab/dual PI3K/mTOR inhibitor response in Glioblastoma implementing novel MR and PET imaging biomarkers.

    Get PDF
    Purpose: Resistance to bevacizumab (BEV) in glioblastoma (GBM) is believed to occur via activation of molecular networks including the mTOR/PI3K pathway. Implementing an MRI/PET molecular imaging biomarker approach, we sought to interrogate response to combining BEV with the mTOR/PI3K inhibitor BEZ235. Methods: Tumors were established by orthotopically implanting U87MG-luc2 in mice. Animals were treated with BEZ235 and/or BEV, and imaged using diffusion weighted-MRI, T2 weighted (T2w), and T2* weighted (T2*w) before and following delivery of superparamagnetic iron oxide (SPIO) contrast. Maps for changes in relaxation rates: ΔR2, ΔR2* and apparent diffusion coefficient (ADC) were calculated. Vessel Size Index (VSI) and micro vessel density index (MDI) were derived. 3´-deoxy-3´-[18F]fluorothymidine ([18F]FLT)- and O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) PET was further performed and tumor endothelium/proliferation markers assessed by immunohistochemistry. Results: Treatment with BEV resulted in a pronounced decrease in tumor volume (T2w MRI). No additive effect on tumour volume was observed in BEV/BEZ235 combination compared with BEV monotherapy. Ki67 proliferation index staining and [18F]FLT uptake studies were used to support observations. Using ΔR2* and ΔR2 values respectively, BEZ235 + BEV combination significantly reduced tumor microvessel volume in comparison to BEV alone. Decreased MDI was further observed in the combination group; supported by von Willebrand Factor (vWF) immunohistochemistry. We observed decreased [18F]FET uptake following BEV, but failed to observe further reduced [18F]FET uptake in the combination cohort. vWF IHC analysis showed mean tumor vessel size increased in all cohorts. Conclusions: Assessing MR imaging biomarker parameters together with [18F]FET and [18F]FLT PET, informed drug combination mechanism of action and provided clues as to potential clinical response. Translation of a BEZ35/BEV combination regimen could support reduction of peritumoral edemaobviating the requirement for steroids. Implementing hypothesis driven molecular imaging studies facilitates the interrogation of drug response in the pre-clinic. These data may more accurately predict the clinical potential of novel therapeutic approaches in oncology

    Comparison of neuropathic pain and neuronal apoptosis following nerve root or spinal nerve compression

    Get PDF
    Altered dorsal root ganglion (DRG) function is associated with neuropathic pain following spinal nerve injury. However, compression of the cauda equina and dorsal rhizotomy proximal to the DRG do not induce significant pain, whereas in the spinal nerve and peripheral nerve, injury distal to the DRG does induce neuropathic pain. Caspase signaling induces apoptosis, and caspase inhibitors prevent pain-related behavior. The degree of DRG neuronal apoptosis is thought to play a role in pain behavior. We suggest that differences in pain behavior according to the injury sites within the DRG may be related to imbalances in apoptotic injuries. The aim of this study was to determine which compression injury was more painful and to compare behavior with expression of tumor necrosis factor (TNF)-alpha in DRG and apoptosis in the DRG following crush injury to the L5 nerve root or L5 spinal nerve. Sprague–Dawley rats received a crush injury to the L5 spinal nerve (distal to the DRG), crush injury to the L5 nerve root (proximal to the DRG), or no crush injury (sham). Mechanical allodynia was determined by the von Frey test. Expression of TNF-alpha was compared among three groups using immunoblot findings. Furthermore, we compared the percentage of neurons injured in the DRG using immunostaining for apoptotic cells and localization of activated caspase 3. Mechanical allodynia was observed in both crush injury groups. The duration of mechanical allodynia in the distal crush group was significantly longer than in the proximal crush group (P < 0.05). TNF-alpha expression was increased in DRG neurons following injury. DRG apoptosis in the distal crush group was significantly higher than in the proximal group at each time point (P < 0.05). This study suggests that spinal nerve crush injuries produce a greater degree of DRG apoptosis than do corresponding nerve root crush injuries, and that the former injuries are associated with longer lasting mechanical allodynia. Thus, differences in the time course of mechanical allodynia might be associated with an imbalance in DRG apoptosis

    Differential transcriptional profiling of damaged and intact adjacent dorsal root ganglia neurons in neuropathic pain

    Get PDF
    Neuropathic pain, caused by a lesion in the somatosensory system, is a severely impairing mostly chronic disease. While its underlying molecular mechanisms are not thoroughly understood, neuroimmune interactions as well as changes in the pain pathway such as sensitization of nociceptors have been implicated. It has been shown that not only are different cell types involved in generation and maintenance of neuropathic pain, like neurons, immune and glial cells, but, also, intact adjacent neurons are relevant to the process. Here, we describe an experimental approach to discriminate damaged from intact adjacent neurons in the same dorsal root ganglion (DRG) using differential fluorescent neuronal labelling and fluorescence-activated cell sorting (FACS). Two fluorescent tracers, Fluoroemerald (FE) and 1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine perchlorate (DiI), were used, whose properties allow us to distinguish between damaged and intact neurons. Subsequent sorting permitted transcriptional analysis of both groups. Results and qPCR validation show a strong regulation in damaged neurons versus contralateral controls as well as a moderate regulation in adjacent neurons. Data for damaged neurons reveal an mRNA expression pattern consistent with established upregulated genes like galanin, which supports our approach. Moreover, novel genes were found strongly regulated such as corticotropinreleasing hormone (CRH), providing novel targets for further research. Differential fluorescent neuronal labelling and sorting allows for a clear distinction between primarily damaged neuropathic neurons and "bystanders," thereby facilitating a more detailed understanding of their respective roles in neuropathic processes in the DRG

    Poster display IV experimental and instrumentation

    Get PDF

    P2 receptors and chronic pain

    Get PDF
    There is abundant evidence that extracellular ATP and other nucleotides have an important role in pain signaling at both the periphery and in the CNS. The focus of attention now is on the possibility that endogenous ATP and its receptor system might be activated in chronic pathological pain states, particularly in neuropathic and inflammatory pain. Neuropathic pain is often a consequence of nerve injury through surgery, bone compression, diabetes or infection. This type of pain can be so severe that even light touching can be intensely painful; unfortunately, this state is generally resistant to currently available treatments. In this review, we summarize the role of ATP receptors, particularly the P2X4, P2X3 and P2X7 receptors, in neuropathic and inflammatory pain. The expression of P2X4 receptors in the spinal cord is enhanced in spinal microglia after peripheral nerve injury, and blocking pharmacologically and suppressing molecularly P2X4 receptors produce a reduction of the neuropathic pain behaviour. Understanding the key roles of these ATP receptors may lead to new strategies for the management of intractable chronic pain
    corecore