129 research outputs found

    Cost-Effectiveness of Stronger Woodframe Buildings

    Get PDF
    We examine the cost-effectiveness of improvements in woodframe buildings. These include retrofits, redesign measures, and improved quality in 19 hypothetical woodframe dwellings. We estimated cost-effectiveness for each improvement and each zip code in California. The dwellings were designed under the CUREE-Caltech Woodframe Project. Costs and seismic vulnerability were determined on a component-by-component basis using the Assembly Based Vulnerability method, within a nonlinear time-history structural-analysis framework and using full-size test specimen data. Probabilistic site hazard was calculated by zip code, considering site soil classification, and integrated with vulnerability to determine expected annualized repair cost. The approach provides insight into uncertainty of loss at varying shaking levels. We calculated present value of benefit to determine cost-effectiveness in terms of benefit-cost ratio (BCR). We find that one retrofit exhibits BCRs as high as 8, and is in excess of 1 in half of California zip codes. Four retrofit or redesign measures are cost-effective in at least some locations. Higher quality is estimated to save thousands of dollars per house. Results are illustrated by maps for the Los Angeles and San Francisco regions and are available for every zip code in California

    Improving Loss Estimation for Woodframe Buildings. Volume 2: Appendices

    Get PDF
    This report documents Tasks 4.1 and 4.5 of the CUREE-Caltech Woodframe Project. It presents a theoretical and empirical methodology for creating probabilistic relationships between seismic shaking severity and physical damage and loss for buildings in general, and for woodframe buildings in particular. The methodology, called assembly-based vulnerability (ABV), is illustrated for 19 specific woodframe buildings of varying ages, sizes, configuration, quality of construction, and retrofit and redesign conditions. The study employs variations on four basic floorplans, called index buildings. These include a small house and a large house, a townhouse and an apartment building. The resulting seismic vulnerability functions give the probability distribution of repair cost as a function of instrumental ground-motion severity. These vulnerability functions are useful by themselves, and are also transformed to seismic fragility functions compatible with the HAZUS software. The methods and data employed here use well-accepted structural engineering techniques, laboratory test data and computer programs produced by Element 1 of the CUREE-Caltech Woodframe Project, other recently published research, and standard construction cost-estimating methods. While based on such well established principles, this report represents a substantially new contribution to the field of earthquake loss estimation. Its methodology is notable in that it calculates detailed structural response using nonlinear time-history structural analysis as opposed to the simplifying assumptions required by nonlinear pushover methods. It models physical damage at the level of individual building assemblies such as individual windows, segments of wall, etc., for which detailed laboratory testing is available, as opposed to two or three broad component categories that cannot be directly tested. And it explicitly models uncertainty in ground motion, structural response, component damageability, and contractor costs. Consequently, a very detailed, verifiable, probabilistic picture of physical performance and repair cost is produced, capable of informing a variety of decisions regarding seismic retrofit, code development, code enforcement, performance-based design for above-code applications, and insurance practices

    Methodology for the damage assessment of vehicles exposed to flooding in urban areas

    Get PDF
    This is the accepted version of the following article: [ Martínez‐Gomariz, E, Gómez, M, Russo, B, Sánchez, P, Montes, J‐A. Methodology for the damage assessment of vehicles exposed to flooding in urban areas. J Flood Risk Management. 2019; 12:e12475. https://doi.org/10.1111/jfr3.12475], which has been published in final form at https://doi.org/10.1111/jfr3.12475Within urban areas, humans carry out a great diversity of activities, and some of them require the use of vehicles. Floods, especially in urban areas, can generate significant tangible direct damages to vehicles themselves and to the urban elements in case of loss of stability and collision, which cannot be dismissed. In this paper, after a state-of-the-art review on damage curves for vehicles, a methodology to assess the direct economic impact for vehicles exposed to flooding has been described, and applied within a study carried out in the framework of the BINGO H2020 EU Project. Only three different studies focused on damages to vehicles in contact with floodwater have been found. Contrasting damage curves for vehicles are found when comparing the three approaches, however, the ones proposed by the U.S. Army Corps of Engineers (USACE) offer a high level of completeness and accuracy. Moreover, USACE's development is the most current research and all the steps for the development of the damage curves are comprehensively described. Finally, after the description of a detailed methodology for flood damage mapping for vehicles, a procedure to evaluate the Expected Annual Damage for vehicles is offered.Peer ReviewedPostprint (author's final draft

    Improving Loss Estimation for Woodframe Buildings. Volume 1: Report

    Get PDF
    This report documents Tasks 4.1 and 4.5 of the CUREE-Caltech Woodframe Project. It presents a theoretical and empirical methodology for creating probabilistic relationships between seismic shaking severity and physical damage and loss for buildings in general, and for woodframe buildings in particular. The methodology, called assembly-based vulnerability (ABV), is illustrated for 19 specific woodframe buildings of varying ages, sizes, configuration, quality of construction, and retrofit and redesign conditions. The study employs variations on four basic floorplans, called index buildings. These include a small house and a large house, a townhouse and an apartment building. The resulting seismic vulnerability functions give the probability distribution of repair cost as a function of instrumental ground-motion severity. These vulnerability functions are useful by themselves, and are also transformed to seismic fragility functions compatible with the HAZUS software. The methods and data employed here use well-accepted structural engineering techniques, laboratory test data and computer programs produced by Element 1 of the CUREE-Caltech Woodframe Project, other recently published research, and standard construction cost-estimating methods. While based on such well established principles, this report represents a substantially new contribution to the field of earthquake loss estimation. Its methodology is notable in that it calculates detailed structural response using nonlinear time-history structural analysis as opposed to the simplifying assumptions required by nonlinear pushover methods. It models physical damage at the level of individual building assemblies such as individual windows, segments of wall, etc., for which detailed laboratory testing is available, as opposed to two or three broad component categories that cannot be directly tested. And it explicitly models uncertainty in ground motion, structural response, component damageability, and contractor costs. Consequently, a very detailed, verifiable, probabilistic picture of physical performance and repair cost is produced, capable of informing a variety of decisions regarding seismic retrofit, code development, code enforcement, performance-based design for above-code applications, and insurance practices

    How to increase earthquake and home fire preparedness: the fix-it intervention

    Get PDF
    Published, evaluated community intervention studies concerning natural hazard preparedness are rare. Most lack a rigorous methodology, thereby hampering the development of evidence-based interventions. This paper describes the rationale and methodology of a cross-cultural, longitudinal intervention study on earthquake and home fire preparedness, termed fix-it. The aim is to evaluate whether and how the intervention brings about behaviour change in the targeted communities in two coastal cities with high seismic risk: Seattle, USA and Izmir, Turkey. Participants are adult residents of these cities. The intervention group attends a 6-h workshop, which focuses on securing items in the household. The control group does not attend the workshop. All participants complete baseline and post-intervention, as well as 3- and 12-month follow-up assessments. The primary outcome measure is an observational measure of nine preparedness items for earthquake and fire in participants’ homes. This is evaluated alongside participants’ self-reports concerning their preparedness levels. Secondary outcomes are changes in levels of self-efficacy, perceived outcome, trust, corruption, empowerment, anxiety and social cohesion. Results from the first of the studies, conducted in Seattle in September 2015, indicate that while the fix-it intervention is effective, in the longer term, multi-hazard preparedness is increased by the mere act of going into people’s homes to observe their preparedness levels along with assessing self-reported preparedness and sociopsychological orientation towards natural hazards. This protocol and study aim to augment the empirical literature on natural hazard preparedness, informing national and international policy on delivery of evidence-based community interventions to promote multi-hazard preparedness in households

    The 3rd Global Summit of Research Institutes for Disaster Risk Reduction: Expanding the Platform for Bridging Science and Policy Making

    Get PDF
    The Global Alliance of Disaster Research Institutes held its 3rd Global Summit of Research Institutes for Disaster Risk Reduction at the Disaster Prevention Research Institute, Kyoto University, Japan, 19–21 March, 2017. The Global Alliance seeks to contribute to enhancing disaster risk reduction (DRR) and disaster resilience through the collaboration of research organizations around the world. The summit aim was to expand the platform for bridging science and policy making by evaluating the evidence base needed to meet the expected outcomes and actions of the Sendai Framework for Disaster Risk Reduction 2015–2030 and its Science and Technology Roadmap. The summit reflected the international nature of collaborative research and action. A pre-conference questionnaire filled out by Global Alliance members identified 323 research projects that are indicative of current research. These were categorized to support seven parallel discussion sessions related to the Sendai Framework priorities for action. Four discussion sessions focused on research that aims to deepen the understanding of disaster risks. Three cross-cutting sessions focused on research that is aimed at the priorities for action on governance, resilience, and recovery. Discussion summaries were presented in plenary sessions in support of outcomes for widely enhancing the science and policy of DRR

    Seismic Response of Underground Lifeline Systems

    Get PDF
    This paper presents and discusses the recent developments related to seismic performance and assessment of buried pipelines. The experience from the performance of pipelines during last earthquakes provided invaluable information and lead to new developments in the analysis and technologies. Especially, the pipeline performance during Canterbury earthquake sequence in New Zealand is taken as a case study here. The data collected for the earthquake sequence are unprecedented in size and detail, involving ground motion recordings from scores of seismograph stations, high resolution light detection and ranging (LiDAR) measurements of vertical and lateral movements after each event, and detailed repair records for thousands of km of underground pipelines with coordinates for the location of each repair. One of the important learnings from the recent earthquakes is that some earthquake resistant design and technologies proved to be working. This provides a motivation to increase international exchange and cooperation on earthquake resistant technologies. Another observation is that preventive maintenance is important to reduce the pipeline damage risk from seismic and other hazards. To increase the applicability and sustainability, seismic improvements should be incorporated into the pipe replacement and asset management programs as part of the preventive maintenance concept. However, it is also important to put in the most proper pipeline from the start as replacing or retrofitting the pipelines later requires substantial investment. In this respect, seismic considerations should be taken into account properly in the design phase
    • 

    corecore