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ABSTRACT

Idealizations in soil mechanics are usually necessary in

order to obtain solutions and to have these solutions in a readily

applicable form. Limit ~qui1ibrium has been a method of solving

various soil stability problems.

One weakness of the limit equilibrium method has been the

neglect of the stress-strain relationship of the soil. According

to the mechanics of. solids, this condition must be satisfied for a '

complete solution. Limit analysis, through the concept of a yield

criterion and its ~ssociated flow rule, considers the stress-strain

relationship. However, a soil with cohesion and internal friction

is not modeled accurately by a theory of perfect plasticity. Never­

theless, indications are that the stability problems in soil mechanics

will, in time, be computed on the basis of the limit theorems of plas­

ticity. A discussion is given, therefore, of the significance of

the limit analysis in ter~ of the real behavior of soils and their

idealizations. With this background, the meaning of existing limit

equilibrium solutions is discussed, and the power and simplicity of

application of the limit analysis method is demonstrated.



1. INTRODUCTION

Soil mechanics, a science of relatively recent origin, has

been well developed since Karl Terzaghi'sl pioneering efforts in the

early twentieth century.
2

As pointed out by Drucker , one peculiar

feature of soil mechanics has. been the lack of interrelation be-

tween methods used to treat similar problems with different purposes

in mind.

In foundation problems, for instance, the stress dis~ribution

under a footing is determined from Boussinesq's solution for the stress

distribution under a vertical load on a semi-infinite plane--a solution

from linear elasticity theory.' On the other hand, the bearing capacity

of a footing is determined using limit equilibrium (or the slipline 80-

lution) of plasticity theory. The calculation of the settlement of a

footing actually utilizes visco-elastic theory to describe the material

behavior with time.

The reasons for treating the problems differently are evident:

The key to obtaining the complete solution, sparting with a consideration

of elastic action and proceeding to contained plastic flow, and final1y

unrestricted plastic flow, requires the basic knowledge of the stress-

strain relations for soils in the elastic as well as the inelastic range.

No such general relations have been determined as yet, for an inelastic

soil. Even with an appropriate idealized stress-strain relationship', the

details of the distribution of stress and strain in the complete solution

are. far too complicate'd and probably not possible. ·The solutions, if

-2-



possible to obtain, would be too involved and impractical for ap­

plication. Necessary idealizations and simplifications are, there­

fore, used by engineers to obtain solutions for practical problems.

These simplified analyses must, ultimately, be justified by com-

.parison with available rigorous solutions, or, in the event these

are lacking, experimental results.

As an illustration of this point, let us examine a problem

and the simplifications involved. In order to solve stability prob­

lems, which are the primary concern of this paper, such as lateral

earth pressures, bearing capacity, or stability of vertical cuts,

use is made of only limit equilibrium conditions3 (that is, the stress

conditions in ideal soils immediately preceeding ultimate failure).

No thought is given to the corresponding state of strain. This method

of. attack raises doubts, if one recalls from mechanics of solids, that

a valid solution requires satisfying the boundary conditions, equations

of equilibrium (or of motion), equations of compatibility, and the

stress-strain relationship. It is this stress-strain relationship

which connects equilibrium to compatibility, and which distinguishes

elasticity from plasticity or visco-elasticity theories. Without con~

sidering the stress-strain relationship, a so-called solution is merely

a guess. On the other hand, the limit equilibrium approach simplifies

the theoretical analysis drastically, and provides good predictions

of the ultimate load of soil stability problems which are otherwise un­

available for practical applications.

-3-



A more rigorous approach is to consider the stress-strain re-

lationship in an idealized manner. This idealization, termed normality

(or the flow rUle)4, establishes the limit theorems5 on which limit a-

nalysis is based. Within the framework of this assumption, the approach

is rigorous and the techniques are competitive with those of limit equi-

librium, in some instances being much simpler. The plastic limit theo-

5rems of Drucker, Prager, and Greenberg may conveniently be employed to

obtain upper and lower bounds of the ultimate load for stability prob-

lems, such as the critical heights of unsupported vertical cuts, or the

bearing capacity of nonhomogeneous soils.

It is the objective of this paper, through a review of the

standard and widely known techniques used in the solutions of soil sta-

bility problems, to accomplish two purposes. The first is to discuss

the meaning and nature of existing, "classical", soil mechanics solutions

from the limit analysis point of view. Many of the techniques will be

shown to implicitly contain the basic philosophy of one or both of the

plastic limit theorems.

The second purpose is to demonstrate the usefulness and power

of the plastic limit theorems in developing a limit analysis technique.

Useful information, although sometimes crude, will be quickly obtained.

It will be seen, by comparing numerical results of the classical and

limit analysis solutions, that good agreement is usually obtained. The

limit analysis technique will provide new solutions, or an alternative

method which is more rational than existing techniques.

-4-



(1) The critical height of a vertically unsupported cut,

(2) Active and passive lateral earth pressure, and

(3) The bearing capacity of soils.

-5-



2. FUNDAMENTALS OF LIMIT ANALYSIS

2.1 Basic Concepts

The mechanical behavior of soils is usually described as

having both cohesion, c, and internal friction,~. The resistance of

soils to deformation is furnished by cohesion and friction across the

possible slip planes in a mass of material. The generally accepted

law of failure in soil mechanics is Coulomb's criterionl , which states

that slip occurs when, on any plane at any point in a mass of soil,

the shear stress,'~ (>0) reaches an amount that depends linearly upon

the cohesion and the normal stress, cr (here taken to be positive in

compression), i.e. (Fig. 1)

1" = C + cr tan~ (1)

For illustrative purposes, a simple physical model, shown in

F~g. 2, may be helpful. In the figure, a layer of dense granular ma~

stant during the experiment, whereas, P
t

gradually increases from zero

to the value which will produce sliding. At the instant of sliding, the

The force P acts at
n

terial is subjected to the action of two forces.

right angles to the plane 1-1, whereas the other, the force Pt,"acts

tangentially to that plane. Let us further assume that P remains con­
n

value P
t

must not only overcome cohesion, but also must exceed the re­

sistance furnished by two types of friction. The first of these arises

on the contact surfaces of adjoining particles and is termed ,surface

friction. The second, offered by the interference o~ the particles

-6-



themselves to changes of their relative position, is termed inter-

locking friction. It is this interlocking friction that requ~res the

displacement upward, as well as the usual displacement to the side.

The displacement vector must, therefore, make an angle e to the slip

plane.

If soil were idealized as perfectly plastic with Coulomb's

law of yielding, then Eq. (1) defines the yield curve in the stress

space cr,~. If now a stress state, represented by a vector from the

origin, is increased from zero, yield will be incipient when the vec-

'tor reaches the curve (two straight lines). For a perfectly plastic

material, the vector representing the stress- state at any given point

can never protrude beyond the curve, since it is an unattainable stress

state in granular media.

Let us further assume that the stress-strain relation is

such that the plastic strain rate vector is always normal to the yield

curve when their corresponding axes are superimposed (Fig. 1). It can

be seen from the figure that this is equivalent to assuming e=¢ in

Fig. 2. The perfectly-plastic idealization with associated flow rule

(normality) is illustrated by a block shearing on a horizontal plane,

Fig. 3a. Volume expansion is seen to be a necessary accompaniment to

shearing deformation according to the idealizations. This theory was

6 7
proposed by Drucker and Prager and generalized later by Drucker , and

Shield
8

.
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In contrast to the above mentioned effort, one may idealize

soil as a frictional material for which the interlocking friction is

ignored. Deformation occurs by the smooth sliding of adjacent sur­

faces of material points (see Fig. 3b). If tan~ in expression (1)

denotes the coefficient of friction between adjacent surfaces of m~­

terial points along the plane, expression (1) becomes the well-known

Coulomb friction limit condition for the shear strength of soil. The

important difference between CoulonID friction and perfectly-plastic

Coulomb action is seen in Fig. 3, where frictional sliding is hori­

zontal while perfectly-plastic shearing involves large upward verti­

cal motion. If the plastic strain rate vector is superimposed to. the

Coulomb limit curves (assumed as yield curve), the normality rule does

not hold (See Fig. 1). The extent of this endeavor is described in a

recent work by Dais9 .

Real soils are quite complex and are still imperfectly under­

stood. They are neither truly frictional in behavior, nor are they

plastic. Hence, any such idealized treatment, as discussed above,

will either result in some differences between predictions and ex­

perimental facts, or will entertain certain mathematical difficulties.

For example, the dilatation which is predicted by perfect plastic

theory to accompany the shearing action will usually be larger than"

that found in practice
lO

• The inadequacy of a perfectly plastic

idealiz-ation has been discussed by Drucker2 ,11,12 and DeJong13 among

others. The lack of uniqueness for solutions to problems using fric­

tion theory has been exhibited and explored by Dais9 .

-8-



In order to improve upon the perfectly plastic theory,

Drucker, Gibson, and Henkel introduced the strain-hardening theories

f '1 1 " 14 h' h 1 d d b 'k d Sh' 1d15o 801 p ast1c1ty , W 1C were ater exten e y Jen1 e ~n 1e·

The work-hardening plastic action may involve upward or downward ver-

tical motion, or neither, of the sliding block as illustrated in Fig.

3, which qualitatively agrees with experimental data. Recently, more

16sophisticated theories have been proposed by Weidler and Paslay ,

17 18 19
Spencer ,and Sobotka' on non-homogeneous soils in an attempt to

overcome some of the known deficiencies in previous theories, C1earl~

the development of a more sophisticated theory will almost always bring

a more elaborate stress-strain relation. Solutions to practically im-

portant problems, on the contrary, become exceedingly difficult to

obtain, if the stress-strain relation is too involved. A compromise

must, therefore, be made between convenience and physical reality,

In certain circumstances, such as in the stability problems

of soil mechanics, there appears to be reasonable justification for

the adoption of a limit analysis approach based upon Coulomb's yield

criterion and its associated flow rule in soils, as discussed in Sec-

tion 1.

2,2 Limit Theorems

The foundations of limit analysis are the two limit theo-

5rerns, For any body or assemblage of bodies of elastic-perfectly

plastic material they may be stated, in terminology appropriate to

-9-



soil mechanics, as:

Theorem 1 (lower bound)--If an equilibrium distribution of stress can

be found which balances the applied load and

nowhere violates the yield criterion, which

includes c, the cohesion, and ~, the angle

of internal friction, the soil mass will not

fail, or will be just at the point of failure.

Theorem 2 (upper bound)--The soil mass will collapse if there is any

compatible pattern of plastic deformation

for which the rate of work of the external

·loads exceeds the part of internal dissi­

pation.

According to the statement of the theorems, in order to prop­

erly bound the "true" solution, it is necessary to find a compatible

failure mechanism (velocity field or flow pattern) in order to obtain

an upper bound solution. A stress field satisfying all cond~tions of

Theorem 1 will be required for a lower hound solution. If the upper

and lower bounds provided by the velocity field and stress field coin­

cide, the exact value of the collapse, or limit, load is determined.

2.3 The Dissipation Functions

As stated in the upper bound theorem, it is necessary to com­

pare the rate of internal dissipation of energy with the rate of work

of external forces. The dissipation of energy, D, per unit volume due

to a plastic strain rate i~, therefore, of primary importance. It can

-10-



be shown in general that the dissipation function has the simpler

form20

D (2)

where e
t

denotes a positive principal component of the plastic strain

rate tensor.

For the particular case of plane strain, the expression (2)

reduces to

D c cos0 '\1I max (3)

where '\1 _- [(~ _~ )2 + y' 2J1 / 2 . th · t f"1 ~ ~ 18 e maX1mum ra e a eng1neer1ngmax x y xy

shear strain.

An alternative derivation in terms more familiar to the engi-

neer will be discussed in what follows. The discussion will be re-

stricted to the plane strain case. A number of familiar shear de-

formation zones, which are especially useful for soil mechanics, are

treated as illustrative examples. The results are adequate in con-

nection with later application. Some of the results have been dis-

21cussed by Chen .

Homogeneous Shearing Zone--The energy dissipated in the homo-

geneous shearing zone, Fig. 4, is

-11-



(4)

.
in whichY is the shear strain rate and t is the thickness of the zone.

The dimension perpendicular to the plane of the paper in Fig. 4 is

taken as unity and the width of the zone is denoted by b. Then the

rate of energy dissipated per unit volume, D, is the total dissipation

in Eq. (4) divided by the volume, bt:

or

D y (1" - cr tan0)

(5).

Since the Coulomb yield criterion must be satisfied in the plastic zone

it follows from Eq. (1) that

D = c 'V

It should be noted that the shear strain rate, Y, in the

zone is not the maximum shear strain rate y ,but is related by
max

( 6)

y = y cos0. This is the consequence of volume expansion accompaniedmax

by plastic shearing. The Mohr circle shown in the figure indicates
. .

clearly the relationship between y and y .
max

Figure 5 shows a number of examples of differently shaped

homogeneous shearing zones. Fig. 5a is a part of Fig-. 4 as shown by

-12-



the dotted lines in the figure. Fig. 5b is the half field of homo-

geneous deformation of Fig. Sa, while a proper rigid body rotation

of Fig. Sb results in the interesting field of Fig. Sc.

Narrow transition layer--If the thickness t in Fig. 4 is

very thin, the homogeneous shearing zone may be imagined~ as in Fig.

6, to be a simple discontinuity with a discontinuous tangential ve-

locity au = ty and a discontinuous normal separation Ov = ty tan 0 =

Ou tan0. The rate of dissipation of work per unit of discontinuity

surface is

P
t

P
DA = b Ou - b n Ov

or (7)

D
A

= eu (~ - cr tan0) = cou

Figure 6 shows clearly that a simple slip Ou must always be

accompanied by a separation ov for 0~O. The familiar circular surface

of discontinuity is, therefore, not a permissible surface for rigid

body sliding because of the separation requirement for c-~ soils. The

plane surface and the logarithmic spiral surface of angle ~ are the

only two surfaces of discontinuity which permit rigid body.motions rela-

tive to a fixed surface.

Zone of radial shear when ~=c-~An approximation to a zone of

radial shear is given in Fig. 7a where six rigid triangles at an equal

-13-



central angle be are shown. Energy dissipation takes place along the

radial lines O-A, O-B, O-C, etc. due to the discontinuity in velocity

between the triangles. Energy is also dissipated on the discontinuous

surface D-A-B-C-E-F-G since the material below this surface is con-

sidered at rest. Since the material must remain in contact with the

surface D-A-B-C-E-F-G, the triangles must move parallel to the arc

surfaces. The rigid triangles must also remain in contact with each

other. Hence, the compatible velocity diagram of Fig. 7b shows that

each triangle of the mechanism must have the same speed.

With expression (7), the rate of dissipation of energy can

easily be calculated. The energy dissipation along the radial line

O~B, for example, is the cohesion c multiplied by the relative ve-

locity, au, and the length of the line of discontinuity, r:

(2 · ~e)c r V S1n 2

where the relative velocity 6u, appears as (2V sin ~e).

( 8)

Similarly,

the energy dissipation along the discontinuous surface A-B is

c (2r sin ~e) V (9)

where the length of A-B is (2r sin ~e) and 6u =y. Since the energy

dissipation along the radial line O-B is the same as along the arc

surface A-B, it is natural to expect that the total energy dissipation

-14-



in the zone of radial shear, D-O-G, with a central angle@ will be

identical with the energy dissipated along the arc D-G. This is

evident since Fig. 7a becomes closer and closer to the zone of radial

shear as the number n increases. At the limit, when n approaches

infinity, the zone of radial shear is recovered. The total energy

dissipated in the zone of radial shear is the sum of the energy dis-

sipated along each radial line when the number n approaches infinity:

lim (2
®

D = c r V sin 2n) n

I'}'-tJll'CO

or

2c·r V
®

D = lim n sin-
2n

11'-""'"00

or (10)

D = c V (r®)

where

be
@

= -
n

Log spiral zone of·c-0 soils--The extension of the above

discussion to the more general case of a log spiral zone of c-~

soils is evident. A picture of six rigid triangles, at an equal angle

A8 to each 9ther, is shown in Fig. 8a. It is found that the energy

dissipation in a log spiral zone of c-0 soil is equal to the energy

dissipated along the spiral discontinuity surface, which is:

... 15-



or

D = c Sr V de
6

= c S (r -expetan~) (V expetan0) de
000

1
D = 2 C Va r o cot~ (exp2@Dtan0 - 1) (11)

where V , r , and8 are shown in Fig. 8a. A detailed discussion of
o 0

the log spiral zone is given in the Appendix.

-16-



3. THE STABILITY OF VERTICAL CUTS

3.1 Limit Equilibrium Analysis

The comparison between limit equilibrium and plastic limit

analysis can be illustrated by evaluatirig the stability of soil in a

vertical bank. The height at which an unsupported vertical cut, as

illustrated in Fig. 9, will collapse due to the weight of the soil

will be defined as the critical height, H . The conventional a-cr

nalysis (limit equilibrium) will be examined first and then compared

to the method of limit analysis.

It is common practice to evaluate this problem by the equi­

librium method. The failure surface is assumed to be a plane inclined

at an angle e to the horizontal (See Fig. 9) and Coulomb's law of

failure is applied. From Eq. (1),

'f c + cr tan0

The distribution of a and T along the failure plane is unknown, but

if s is the length of the shear plane:

I 'f ds = I c ds + I a tan0 ds = cs + tan0 I a ds

Equilibrium requires that:

I (J ds = Wease

I ,. ds = W sine

-17-
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Substituting Eq. (13) into Eq. (12) yields

W defines the unit weight of the soil, w, multiplied by the volume of

where

W sine
Hcr

= C --'-e + Wease tan0
S1n

w HZ
W = cr

2 tane

(14)

the soil mass above the shear plane. If e is minimized then:

Equation (14) then yields the critical height

(15)

(16)

Assuming a curved surface instead of a plane for the sliding surface

will reduce the critical height slightly. Fellenius22 used this con-

clition and found the critical height to be

H =cr
3.85e 1 1

W tan(L;TT + 20) ( 17)

In this analysis, Coulomb's law is only satisfied along the assumed

failure plane. It is not shown, nor known, if ·Coulomb's law of failure

is violated at other points. A valid solution requires that equilibrium,

-18-



compatibility (and boundary conditions) and the stress-strain relation-

ship be satisfied. Here only equilibrium has been satisfied. From

the limit theorems it is known that this solution is not a lower bound

since only equilibrium is satisfied, and not the yield criterion. The

solution is merely one of many solutions that satisfy equilibrium. It

is not known whether or not it is unique.

3.2 Plastic Limit Analysis

The limit analysis of this problem, first performed by

Drucker and prager
6

, involves determining a lower bound on the collapse

load by assuming a stress field which satisfies equilibrium and does

not violate the yield criterion at any point. An upper bound is ob-

tained by a velocity field compatible with the flow rule in which the

rate of work of the external forces equals or exceeds the rate of in-

ternal energy dissipa~ion.

Starting first with the upper bound, a mechanism (velocity

field) is selected as shown in Fig. 10. As the wedge, formed by the

shear plane which makes an angle ~ with the vertical, slides down-

ward along the discontinuity surface, there is a separation velocity,

Vsin0, from the discontinuity surface. The rate of work done by the

external forces is the vertical component of the velocity multiplied

by the weight of the soil wedge:

1 -2
-2wH tan~ V cos(0 + B)cr

-19-
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While the rate of energy dissipated along the discontinuity surface

in Eq. (7):

H
c~ V cos0

cos~
(19)

Equating the rate of external work to the rate of internal energy dis-

sipation gives:

H < 2c cos0
cr - w sin~ cos(¢+~)

If 0 is minimized then

and

(20)

(21)

(22)

This is the same value obtained by the method of limit equilibrium.

This implies that the limit equilibrium method solution presented

previously is an upper bound, unless the solution is exact.

A lower bound ·can be obtained by constructing a stress

field composed of three regions as shown in Fig. 11a. Region I, in

the bank itself, is subjected to uniaxial compression, which increases

with depth. Region II is under biaxial compression and region III is

under hydrostatic pressure (IT =cr). Fig. llb shows ~he corresponding
x y

-20-



Mohr circles for each r~gion. Failure occurs when the circle repre-

senting Region I meets the yield curve. Therefore,

~WH = c cos0 + ~WH sin0

and (23)

hence, the lower hound solution is only one half the value given by

the upper bound solution. 3e 1 1
If the average is used, Her = W- tan(4TI + 20),

then the maximum error is 33%.

6As indicated by Drucker and Prager , the upper bound may be

improved by choosing for a discontinuity surface a logarithmic spiral

rather than the plane used here (See Fig. 10). The lower bound may

be improved by the choice of other stress fields, probably quite com-

p1ex and which may involve tensile stresses in the soil.

3.3 Soil Unable to 'Take Tension

In the laboratory soil may exhibit the ability to resist

tension. In the field, however, the presence of water, or tensile

cracks near the surface, may destroy the tensile strength of the soil.

Hence, the tensile strength of soil is not reliable and it may be neg-

lected. This is a conservative idealization. The Coulomb yield cri-

terion is modified by the tension cut-off as shown in Fig. 1 in which

the requirement of zero tension is met by the circle termination as

-21-



No ener-

shown (the upper half of the yield curve is O-D-B).

As the soil is unable to resist tension, the introduction of

a tensile crack in a failure mechanism is permissible 6 ,23,24

gy is dissipated in the formation of a simple tension crack; both nor-

mal and shear stress are zero on the plane of separation (See the origin

in Fig. 1).

The rotational mechanism containing a simple tension crack

and a homogeneous shearing zone is shown in Fig. 12. Failure due to

tipping over of the soil "slab" of thickness b. about point A with an

angular velocity w is possible 7• The region ABC of homogeneous shearing,

y, is the fi~ld shown in Fig. 5b which indicates that w = V. Equation

(6) then gives D = cy = COO. The total rate of dissipation of internal

energy for unit dimension perpendicular to the paper is just D times

the area of the triangle ABC or

(24)

The rate of external work, done by gravity, ~s the weight of

the soil moving downward as the "slab" rotates about A, multiplied by

-1:1
the velocity, which is w 2

W~w~H

or

1 2
zw!J. HW

-22-
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If the rate of external work is equated to the dissipation, and

6 allowed to approach zero, it yields:

(26)

This upper bound, which neglects the tensile stress, agrees with the

lower bound for the previous case, where moderate tensile capacity

was incorporated into the yield criterion. However, an examination

of the stress field for this latter case reveals that no tensile stress

exists. Hence, the solution is also a valid for the case of a -tension

cut-off. Since the upper and lower bound solutions agree, the value

of His:
cr

the full height of the bank.

librium solution does not provide an indication of its own applica-

bility or validity.

(27)
2c 1 1
w tan(2;TI + 20)Hcr

The upper bound and lower bound theorems provide a tool which

When comparing the limit analysis approach with the classical

allows one to bound the "true ll solution. They provide a guideline for

limit equilibrium method, the realization that it cannot be regularly

or confidently stated that the present limit equilibrium approach is

either an upper, or lower, bound is quite important. The limit equi-

This also confirms Terzaghi'sl solution for a tensile c~ack extending
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the inexperienced and the experienced person and the knowledge he re­

quires to properly choose a rational factor of safety. Using limit

analysis, the soil mechanician may easily bound a solution. With the

error known from this part of his analysis, he may include the error

in the material properties, perhaps make allowances for workmanship,

and logically calculate a factor of safety, This is the probable

course that soil mechanics, with the bounding of solutions, may take,

It must be borne in mind that limit analysis is only. valid within the

framework of the stress-strain relationship (flow rule).

-24-



It is ap-

4. LATERAL EARTH PRESSURES

4.1 Introduction

Lateral earth pressure can be divided into active earth pres­

sure and passive earth pressure as illustrated in Fig. 13
25

parent that the wall may have two directions of motion, into the bank

or away from the bank.

If the wall is initially at rest and held by a force P=P ,
o

it is apparent that for a cohesionless soil, as the force P is re-

duced, the wall will be forced outward due to the weight of the soil.

As P is gradually reduced, the soil undergoes first elastic deformation,

then elastic-plastic deformation (contained plastic flow, where the

elastic and plastic strains are of the same order) and finally, un-

contained plastic flow. Figure 13b shows a load-displacement curve de-

picting the behavior of the soil under active and passive earth pressure,

The limiting force P=P is usually defined as the active earth pressure,an

which is bounded from below by upper bounds, from above by lower bounds.

The explanation for this lies in the definition of the upper

and lower bounds. The lower bound is a load for which the structure

will not fail, if equilibrium and the yield criterion are satisfied.

The upper bound is a load for which the structure will fail when the

rate of external work equals or exceeds the rate of internal energy

dissipation in a geometrically admissible velocity field. It is seen

in Fig. 13b that the loads for which the wall will not continually dis-

place (fail) lie below the passive earth pressure and above the active
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earth pressure. Likewise, the upper bounds lie outside this region,

above the passive earth pressure and below the active earth pressure.

To approach the true active earth pressure, one must ma~irnize the

upper bound and minimize the lower bound.

If the force P is increased from P , displacement occurs and
o ~

failure (continuous displacement under constant load) is the result as

the passive e,arth pressure P ,is approached. The active and. passive
pn

definitions are derived from the role the backfill material plays in

the two cases. In the active earth pressure case, the failure is due

to the soil's weight overcoming the internal friction and pressure on

the wall, that is, the soil is playing an active role. In the passive

earth pressure case the failure is due to the pressure on the wall over-

coming the soil's weight and internal friction, hence, the soil plays

a passive role.

First, examine the conventional limit equilibrium approach,

26
introduced by Coulomb . The soil is assumed, in the active earth

pressure case, to fail by sliding along a plane inclined at an angle

o to the vertical, as illustrated in Fig. 14. Since the wedge is in

a state of equilibrium, the force polygon indicated in Fig. 14 must

close. The force P is the reaction along the back of the wall (the

angle of wall firction, 8, is zero); F is the reaction along the face

RS, at an angle 0 to the normal to RS; and W is the weight of the soil

wedge. The wedge angle, 0, is chosen so 'that the sliding wedge en-

counters the least resistance, and the solution is found to be:
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(28)

The solution may be generalized to include effects of wall friction,

0; walls inclined at an angle a to the vertical; and backfill inclined

at an angle S to the horizontal.

4.2 Plastic Limit Analysis

Next examine the limit analysis solution for a vertical wall

with a flat backfill of cohesionless material, as shown in Fig. 15.

The active earth pressure corresponds to an outward motion of the wall,

caused by the weight of the soil. Therefore, the soil weight is as-

sumed to act as a wedge sliding down and outward, against the wall RT.

The mechanism is two rigid bodies with plane sliding surfaces. This

is a compatible velocity field for an upper bound solution, since the

velocity V of the soil mass RST is at an angle 0 to the discontinuity

surface RS. The rate of external work is in two parts, the rate of

work done by the soil weight moving downward and the rate of work done

by the force P moving horizontally:

(~WH2 tanO) [V cos(O + 0)J - PV sin(O + 0) (29)

The rate of internal dissipation consists of the energy dis-

sipated along RT and along RS (assume a frictionless wall, which im-

plies no energy dissipated along RT). The( total rate of en~rgy dissi-

pation is:
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cV cos0 (30)

which, for a cohesionless soil (c=O), is zero. Equating the rate of

internal and external work yields:

The limit load or the collapse load is obtained by maximizing

o which yields:

and

p = ~WH2 tanO cot(O + ~)

1 2 211
Pan = ZWH tan ("4TI - 20)

(31)

(33)

For the passive earth pressure case, the mechanism is quite

similar to the active earth pressure case except. that since the motion

is upward, the velocity, V, of the soil wedge is reversed, although

still directed at an angle 0 to the discontinuity surface. The rate

of internal and external work are found in the same manner as for the

active earth pressure, and:

1 1o = -TT + -04 2

and

1 2 2 1 1
Ppn = 2'wH tan (L;TT + 2'0)

-28-
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The upper bound is then minimized to obtain the passive earth

pressure.

To obtain lower bounds, Fig. 16 shows a discontinuous equi-

l ·b· 1· 27. h· h k · h· h· h h h1 r1um so ut10n 1n W lC 18 a parameter w 1C is C osen sue t at

the Coulomb yield criterion will be satisfied. The Mohr 1 s circles in

the figure shows clearly that two extreme values of k are possible which

furnish the needed lower bound solutions of the lateral earth pressure

problem. From the figure, one obtains:

for active earth pressure

for passive earth pressure

(36)

k (37)

Equilibrium is then determined

p = JH kwy dy
o

(38)

The results indicate that the upper and lower bounds for the

active earth pressure and the passive earth pressure, respectively, ~-

gree, indicating the exact solution.

The case considered is a special case of the general problem,

where ~ is the backfill angle, 0 the wall friction angle (6<0), and a
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the wall angle as shown in Fig. 17. All may assume different values,

as well as 0 the angle of internal friction, and c, the cohesion. For

a=900, the case of a vertical wall, the ve~ocity components are shown

in Fig. 18 for the case when the failure mechanism is assumed to be a

plane. The failure plane RS is of length:

For either case, the rate of energy dissipated internally along RS is:

H cos~

cos(O+~)

and the wedge is of weight:

w= lwH2 sino cos~
2 cos(O+~)

The rate of external work is:

for the active case

w V cos(~) - P V sin(0+0)
an

for the passive case

~W V cos(O-0) + P V 8io(0-0)pn

H cos~
c V cos0 cos(O+~

The energy dissipated' by sliding friction between the wall and the

wedge is:
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(42)

(43)



for the active ease

for the passive case

P tan6 V cos(0+0)
an

P tan6 V cos(O-0)pn

(44)

(45)

where P and P denote the normal to the wall components of the ae-an pn

tive and passive earth pressures, respectively,

Equating the rate of internal energy dissipation and the rate

of external work yields

-21WH2 sinO cos(0+0) - cH cos0
cos~

Pan = -e-o-s(~O+~~-) sin(0+0) + tan5 cos(0+0)

and

cos~ iWH2 sino cos(O-0) + cH cos0

Ppn = -c-o-s(-O+~~-) sin(O-0) - tan6 cos(O-0)

(46)

(47)

These equations are valid for a vertical wall, 6<0 (otherwise there

is shearing of the soil instead of wall friction), and the assumption

of a plane for a discontinuity surface. They may be easily rewritten

to include a,

The best choice, so as to maximize or minimize P, of the

angle of the failure plane, 0, may not be easily found for the general
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solution given by Eqs (46, 47). For special cases, such as discussed

above (c=8=B=O), it may be explicitly found or a transcendental e-

quation, which it must satisfy, may be determined. The easiest pro-

cedure is to hold constant the values of the different parameters, and

increment 0 until the maximum P or the minimum P ,is reached. Thisan pn

procedure is suitable for digital computation. Table 1 is a comparison

of Coulomb's solution and this upper .bound limit analysis solution for

a vertical wall with cohesionless material. It may be seen that a-

greement is good.

In this section, an important soil mechanics problem has been

examined from the viewpoint of limit analysis. A solution which agrees

with the limit equilibrium solution has been obtained. The derivation

was seen to be straightforward. The upper bound in the general case

can be improved by considering a rotational discontinuity (logarithmic·

spiral) instead of the plane translation type. Although no numerical

results were presented for a cohesive s~il, the general solutions are

valid, and may be applied.
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5. THE BEARING CAPACITY OF SOILS

In this section certain solutions dealing with the bearing

capacity of soils will be evaluated by the ~thods of limit equilibrium

and limit analysis so that a better understanding of the meaning of

these solutions will be gained. A brief description of the application

of limit analysis to three dimensional soil bearing capacity problems

will then be offered so as to demonstrate the power of the method.

5.1 Limit Equilibrium Analysis

First, consider the bearing capacity of a surcharged cohesive

soil in which the angle of internal friction, 0, is zero. This is i1-

lustrated, schematically, in Fig. 19a. It will be assumed that there

is no contact between the punch and the surcharge. The limit equilib-

rium solution takes as its failure mode a rotation of a semi-circular

section about its own center, 0; located at the corner of the punch.

The distribution of normal stresses along the semi-circular surface is

unknown, but the shear stress is assumed to be equal to c, the cohesion.

The summation of moments about the center of rotation, 0, is taken:

b b
-p 2 + TTb c b + bhw 2' + he b o (48)

where the (hc)b term is due to the shearing of the surcharge material.

The resultant of the weight of the rotating soil, as well as the normal

stresses along the circumference, pass through the center, 0, and pro-

duce no moments. The ultimate bearing capacity of the footing by limit

-33-



28
equilibrium is then :

p
P = b

2h= c(2n +~) + wh (49)

or

p = 6.28c(l + 0.32 ~ + 0.16 :h) (50)

Two other assumptions concerning possible surfaces o,f failure

are given in Fig. 19b,c for purposes of comparison
28

The first con-

sists in assuming the center of rotation'O at the edge of the foundation,

as shown in Fig. 19b. The choice of this failure mode for a limit equi-

librium solution would raise several questions. What is the normal and

shear stress distribution along the circular shear plane? Also, what is

the normal stress distribution along the vertical separation between the

quarter circle and the triangular region? The resultant of the shear

stress along this line passes through 0, but the normal stress resultant

is not defined. A commonly accepted method in limit equilibrium analysis

is to assume the quarter circle rotation produces uni-axial compression

of the soil it bears against, as shown in Fig. 19b. The maximum compres-

sian that may be sustained by this soil is (2c + wh) since 2c is the

greatest allowable difference between principal stresses and wh corre-

sponds to a hydrostatic pressure which is in equilibrium with the sur-

charge at the top surface. (The pressure due to the weight of the soil

within tne region is neglected). Summing moments about 0 of all forces,

yields:

-34-



for h=O:

p
p = b = c (n + 2) + wh 5.l4c + wh (51)

which is nearly 20% less than the value of 6.28c obtained in Fig. 19a.

p 5.l4c (52)

An even lower limit equilibrium solution can be produced by

considering the scheme shown in Fig. 19c, which assumes a triangular

soil block under the punch. Equilibrium of forces shows that:

p 4c + wh (53)

As with other limit equilibrium solutions, it is not known which solu-

tions should be chosen. If it can be shown that the stress field in

region I can be extended throughout the soil and still satisfy equi-

librium and the yield condition, then this is a lower bound. Unfortu-

nately, it is not known in the present case whether the stress field

can be extended in this manner.

5.2 Plastic Limit Analysis--Upper Bounds

To obtain an upper bound of the same problem by limit analysis,

the chosen mechanisms as shown in Fig. 20 are quite similar. In Fig. 20a

is a rigid body rotation about 0, with shearing t~rough the surcharge,

which is of depth h. If the angular velocity is a, the rate of work
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done by external forces is:

u b· b·
P 20' - bhw r:x . (53)

while the rate of internal energy dissipation is:

. .
c ha TTh + c ha h (54)

Note that the rate of work done by the weight of the body is zero .inee

its motion is perpendicular to the direction of its own weight. Equa-

ting the rate of internal and external work will yield Equation (50),

the first limit equilibrium solution. The solution reduces, for the

important case of h=O, to p=6.28c.

It is apparent that since the two solutions agree, the first

limit equilibrium mode has produced a solution which is an upper bound.

Both solutions are applicable for smooth or rough bases, since the mecha-

nism of the upper bound does not require relative motion between the

punch and the rotating soil mass.

Different mechanisms may be employed to reduce the upper bound.

One such mechanism is shown in Fig. 20b. Using the upper bound tech-

nique, the rate of external work includes term8 due to the force P

moving downward with velocity V, the triangular mass moving diagonally

upward (a 45° right triangle is assumed),' and the surcharge being pushed

upward by the triangular soil mass, while the soil under the footing may
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be considered to be many rigid triangles, as in Fig. 7a, sliding past

one another in a zone of radial shear. The rate of external work is:

l:!1 Boe 0 OCED CJ AOB

u b 2 b 2
p V - rw V - bhw V + rwv (55)

The rate of internal energy is dissipated along the quarter circle

circumference, within the· quarter circle by shearing deformation (it

was shown previously tha,t these two terms are equal), along the di-

agonal shear plane, by shearing through the surcharge, and by relative

shearing between the quarter circle and the triangular mass (due to

a relative velocity). Therefore:

CJADB Be CE OB

2c V nb + c .(2V .(2b + c V h + c V b
2

equating the rate of internal and external work yields

(56)

u
p

h
c (n + 3 + b) + wh (57)

The improvement of the previous limit analysis solutions is only about

when h=O, the 'ultimate bearing capacity is

u
p = 6.l4c

2 percent.
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Fig. 20c illustrates another failure mechanism. With

reference to the figure, the ultimate bearing capacity is given as:

u h
P = 6c + C b + wh (59)

which is slightly better than the previous answer. It is apparent

that the limit analysis provides the consistent upper bound solutions

while the limit equilibrium analysis cannot; when the failure modes,

that can be compared, are considered in the solutions.

Figure 21 shows two examples of rigid block sliding sepa-

rated by velocity discontinuities, approximating the familiar Prandtl

d H-Il h - - 1 29an 1 rose a018ms, respect1ve y • An infinite variety of such mecha-

nisms can be drawn for this problem or for any other in accord with the

intuitive feeling of the designer or analyst for the appropriate mode

of failure.

Fig. 21a shows a solution which is only appropriate for a

smooth punch, since relative motion is required between the punch and

the material. The ultimate bearing capacity is given as

u
p = 5.78c

A similar mechanism is illustrated in Fig_ 2lb, although no relative

velocity occurs between the punch and the material, and the solution

is valid for a rough punch. The ultimate bearing capacity for this

case is also
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u
P 5.78c

The two solutions just illustrated are actually approximations of the

well known Hill (See Fig. 21c) and Prandtl (See Fig. 21d) solutions.

Both yield the following

u
p = (2 + TI) c

Since the solutions for a perfectly rough and a perfectly smooth punch

are identical, the roughness of the punch does not affect the bearing

capacity.

This, then, illustrates the power and simplicity of the limit

analysis approach. Although the Hill and Prandtl solutions are not

very difficult, they might not be the first to come to mind. The ro­

tating soil mass (pu = 6.28c) or the two wedges (pu = 6c), however, are

choices that readily come to mind. Yet, they are only 22% and 17% in

error, respectively. Moreover, the bearing capacity of the rotating

soil ~ss may be reduced by shifting the center of rotation. If the

center is shifted to 0', as illustrated in Fig. 22a, the rate of ex-

ternal work is:

1 ·P(rcose - 2b)a (60)

where r is the radius of the discontinuity surface and e the angle be-

tween the face of the punch and the line AD'.
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The rate of internal work is given by

(n-28) r c r~ (61)

and the resulting upper bound solution is:

2
pU = c(n-28) r

reose - !b
2

(62)

The upper bound may be reduced by minimizing the solution with respect

to the variables e and r:

opU
0or =

and (63)

'opu
006 =

'Hence:

and

b = rcosecr
(64)

Equation (64) states that the location of the center of rotation 0' is

b = r [2cos8 - (n-28 )sin8 ]cr cr cr

directly above 0 as shown in Fig. 22b. Equating Eq. (65) yields
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case = (TI-ze )sinecr cr cr

Introducing this relation into Eq. (62) yields

(66)

u P
P = b =

4c
sin2ecr

(67)

e can be determined from Eq. (66). This is found to be:cr

e = 23.2°cr

and

(68)

u
p 5.53c (69)

which agrees with Fellenius' solution22 .

uAlthough the upper bounds, p =6.28c, 6.14c, 6c, 5.78c, 5.53c,

are not extremely close to the actual answer (2+n)c, they are obtained

quickly and easily. Each can provide useful information when the exact

answer is not available and each can prove even more valuable when the

soil being loaded is inhomogeneous and so not easily amenable to exact

. solution.

5.3 Plastic Limit Ana1ysis--Lower Bounds

To obtain a lower bound of the bearing capacity problem by

limit analysis, choose a simple stress field, which gives 2c as a lower

bound, as shown in Fig. 23a. Since a hydrostatic pressure has no effect
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on plastic yielding for soils w~th 0=0, the simple addition of the

hydrostatic pressure 2c+wh as shown in Fig. 23b to Fig. 23a increases

the ultimate load to (Fig. 23c):

~
p = 4c + wh

which is an improved lower bound, but not a very good one.

(70)

Now, a little physical intuition will raise the lower bound

to a very useful point. Experience has shown that the load on soil

nspreadstf, or is carried by an even greater area, the deeper one goes

(See Fig. 24a). Therefore, consider the 'stress field, shown in Fig.

24b, consisting of two inclined "legsn of 2c each. Where they meet,

under the punch, there is a vertical component of 3c and horizontal

component of c. If the stress field of Fig. 23b are superposed onto

the field of Fig. 24b, the stress field shown in Fig. 24c results and

it is easily verified that the superpo~ition of these stress fields

does not violate the yield condition anywhere. Therefore:

.t
p = 5c + wh

This lower bound may be improved through a more judicious choice of

(71)

stress fields. Valuable techniques for constructing lower bounds of

30this "truss-like" nature have been developed by Drucker and Chen .

It was shown in their paper that the familiar Prandtl field may be

imagined physically as a load supported by infinitely many supporting
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legs. A picture of 9 vertical and inclined legs at 10° to each other

is shown in Fig. 25. As the number of legs grows, the stress in each

decreases. In the limit, the Prandtl field beneath the footing is

recovered. Figure 24c shows clearly that the three legs's ap-

proximation for the Prandtl field gives the answer sufficiently ac-

curate for practical purpose.

In order to avoid obscuring the basic points, the discussion,

up until now, has been limited to a cohesive soil (0=0) so that the

Coulomb's yield criterion of soil plasticity is reduced to the familiar

Tresca yield criterion of metal plasticity. The extension of the above

discussion to inq1ude c-0 soil is evident. The details of such develop­

21ment has been discussed by Chen .

5.4 'Limit Analysis of Three Dimensional Problems

In this section, upper and lower bounds are obtained for the

ultimate bearing capacity of square and rectangular footings on a co-

hesive soil (0=0).

A simple failure mechanism for the footing is shown diagram-

matically in Fig. 26. A-E-E'-A' is the area of footing and the down-

ward movement of the footing is accommodated by move~nt of the material

as indicated in Fig. 26a. In Fig. 26b is shown the plan and section in

Fig. 26a, and it can be seen that this mechanism is an extension into

three dimensions of a simple modification of the two-dimensional Hill's
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mechanism in Fig. 2lc.

The internal dissipation of energy on the discontinuous 8ur-

face A-B-C-D-D'-C'-B'-A ' and in the radial shear zone E-B-C-C'-E'-B'

is:

2 ba + 2 b TTcv- cv--a
J2 J2 2

(72)

Energy dissipated on the two end surfaces A-B-C-D-E-A and A'-B'-C'-D'-

E I_A' is:

b h TT b 2
2cv--+2cv 42J2 J2

Energy dissipated through the surcharge is:

( 73)

c ~ ah (74)
J2

while the rate of external work is Pv /J2 - wabhV /J2 . Hence, the re- '_

sulting ultimate bearing capacity is:

u
pU = L =

ba
b wh

c ( 5.14 + 2.52 - +-)
a c

(74)

Thus, for a square footing, for which b=a, Expression (74) gives the

value 7.66c + wh and a value of 5.77c + wh is found for· a ratio b/a = 4.

This expression tends to the value of 5.14 c + wh for rectangles whose
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length is great compared with their breadth, in agreement with the

familiar Prandtl's solution for the two-dimensional footing.

Considering next the lower bound, a three-dimensional stress

field for the rectangular footing is shown in Fig. 27, which is a di­

rect extension of the two-dimensional stress field in Fig. 23b and Fig,

24b. The stress field of Fig, 27b establishes 3c as a lower bound for

the ultimate bearing pressure. It is easily verified that superposition

of the stress field of Fig, 27a on that of Fig, 27b does not lead to

stresses in excess of the yield limit. Thus, 5c + wh is a lower bound

for the ultimate bearing pressure in the three-dimensional rectangular

or square footing, The failure mechanism of Fig. 26 and the stress field

of Fig, 27, therefore, show that the ultimate bearing pressure for a

square footing lies within 21 percent of the value 6.33c + wh,

Further improvement in the upper bound would require the more

elaborate failure mechanism discussed by Shield and Drucker3l . It was

found that the value 5,71c + wh is a better upper bound for the square

footing then those obtained previously.

-45-



6. CONCLUSIONS

Although a soil with cohesion c and internal friction 0

is not modeled accurately by a theory of perfect plasticity, it is

of interest to note that many classical solutions of stability prob­

lems in soil mechanics can be obtained by Jimit analysis technique.

Within the framework of the idealizations, the limit analysis ap­

proach is rigorous and the techniques are competitive with those of

limit equilibrium, in some instances being much simpler. It should

be kept in mind, however, that too much should.not be expected of the

perfect plastic assumption for such a complicated heterogeneous sub­

stance as soil. Predictions based on this assumption on other prob­

lems in soil mechanics may be misleading. Nevertheless, it seems

clear that the perfect plastic assumption is sufficiently good for

stability problems in soil mechanics.
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8. TABLE AND FIGURES
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TABLE 1 COMPARISON OF LATERAL EARTH PRESSURE SOLUTIONS
BY METHODS OF LIMIT EQUILIBRIUM AND LIMIT ANALYSIS

angle of wall backfill ACTIVE EARTH PRESS. PASSIVE EARTH PRESS.
internal friction angle k = k secD k = k secO
friction angle a an p pn

LIMIT LIMIT LIMIT LD1IT0 8 13 EQUILIBRIUM ANALYSIS EQUILIBRIUM ANALYSIS

10 0 0 .704 .704 1.42 1.42
10 0 .634 .635 1.65 1.73

20 0 0 .490 .490 2.04 2.04
10 .569 .566 2.59 2.59

10 0 .426 .446 2.52 2.64
10 .. 507 .. 531 3.53 3.70

20 0 .350 .426 2.93 3.52
10 .. 430 .516 4.62 5.59

30 0 0 .333 .. 333 3.00 3.00
10 .. 374 .372 4.08 4.09
20 .441 .439 5.74 5.78

10 0 .290 .307 3.96 4.15
10 .334 .350 6.03 6.31
20 .. 401 .420 9.94 10.41

20 0 .247 .297 5.06 6.15
10 .282 .338 9.05 10.91
20 .334 .413 19 .. 40 23.37

40 0 0 .217 .217 4.60 4.60
10 .238 .237 6.84 6.85
20 .266 .266 11 .. 06 11.10

10 0 .195 .204 6.63 6.92
10 .215 .223 11.53 12.08
20 .. 242 .253 24.00 25.36
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(b) Vn=V2=V1=Vo=V True for all Values of 88
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Fig. 10 Limit Analysis Failure Mechanism for the
Stability of a Vertical Cut
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Fig. 17 Pl~ne Sliding for Lateral Earth Pressure
Problems in General
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Fig. 27 Three-Dimensional Stress Field for Bearing
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9. APPENDIX

Energy dissipation in a log spiral zone of c-0 soils:

The extension of the discussion of energy dissipation to a

zone of radial shear, which includes the more general case of a log

spiral zone, for c-0 soils can also be developed. A slip au must

always be accompanied by a separation 8v as discussed in Section 2.

There is no need to consider the separation when the shear strength of

a soil is due only to the cohesion. Consider the six rigid triangles

at an equal angle ~e to each other as shown in Fig. 8a and the corre-

sponding compatible velocity diagram for two typical triangles A-O-B

and B-O-C which are shown in Fig. Sb. If the central angle ~e is

sufficiently small, one may write:

VI (1 + ~e tan0)

v = V (1 + ~e tan~)
n n-1

The velocity in the nth triangle O-E-F is:

v = V (1 + ~e tan0)D
n 0
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where V is the initial velocity. Clearly, the log spiral zone iso

obtained as a limiting case when the number of the rigid triangles

grows to infinity. Hence, as n ~ 00, Eq. (76) becomes:

V (1 + ~e tan0)n = V (1 + etan0)~V exp(etan0)
o 0 n 0

or (77)

V V exp(etan0)
a

where V is the velocity at any angular location, e, along the spiral

and which agrees with the value obtained by Shield32 .

From Equation.(7), the rate of energy dissipation along a

typical radial line, say O-B, is:

(78)

where au appears as V168. Similarly, the dissipation along the spiral

surface A-B is:

where the length of A-B is (r2~e/cos0) and 6u= VI cos0. Again, the

dissipation along a radial line is the same as along the spiral surface

segment provided the central angle ~e is small. Thus, the expression

for energy dissipation in the log spiral zone will be identical with
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the expression along the spiral surface which can be obtained by inte-

grating Eq. (79) along the spiral surface r=r exp8tan0:
o

c J rV de

1 V cot~ (e2~tan0_1)
= 2c 0 r 0 VJ

which agrees with the value obtained by Haythornthwaite33 .
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10. NOMENCLATURE

punch width

cohesion

dissipation function

rate of dissipation of energy per unit area

force

height

coefficient of active earth pressure

coefficient of passive earth pressure

bearing capacity peF unit area

load, force

radius

velocity

weight per unit volume

total weight

discontinuous normal velocity

discontinuous tangential velocity

angular parameter

angular veloc~ty

engineering shear strain rate

maximum rate of engineering shear strain

angle of wall friction

distance

normal strain rate
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€t tensile principal component of the plast~c

strain rate tensor

cr normal stress

'f shear stress

0 angle of internal friction

8 angular parameter defining zone of radial shear.
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