15 research outputs found

    The role of amino acids in the nitrogen cycle of peatlands

    Get PDF
    Future release of carbon from peatlands in response to climate change may be impacted by nitrogen limitation. The current study considers the role of amino acids as a nitrogen source in peatlands. The total free amino acid (TFAA) concentration for peats ranged from 0-2.3 µM, and leucine was the primary contributor. The dominance of sedge or ericaceous shrub plant types did not significantly impact the TFAA pool. Ammonium concentrations were much greater than TFAA and nitrate concentrations. TFAA concentrations were greatest in spring and least in fall. The springtime maxima and summer decrease in concentrations were simulated in a modeling study; however, the model over predicted concentrations. The model was shown to be sensitive to microbial process rates which is likely contributing to model uncertainty. Amino acids may still be considered an important nitrogen source even at low concentrations, and further research on peatland amino acid cycling is needed

    Sustained methane emissions from China after 2012 despite declining coal production and rice-cultivated area

    Get PDF
    China’s anthropogenic methane emissions are the largest of any country in the world. A recent study using atmospheric observations suggested that recent policies aimed at reducing emissions of methane due to coal production in China after 2010 had been largely ineffective. Here, based on a longer observational record and an updated modelling approach, we find a statistically significant positive linear trend (0.36 ± 0.04 ( ±1σ\pm1\sigma ) Tg CH _4 yr ^−2 ) in China’s methane emissions for 2010–2017. This trend was slowing down at a statistically significant rate of -0.1 ± 0.04 Tg CH _4 yr ^−3 . We find that this decrease in growth rate can in part be attributed to a decline in China’s coal production. However, coal mine methane emissions have not declined as rapidly as production, implying that there may be substantial fugitive emissions from abandoned coal mines that have previously been overlooked. We also find that emissions over rice-growing and aquaculture-farming regions show a positive trend (0.13 ± 0.05 Tg CH _4 yr ^−2 for 2010–2017) despite reports of shrinking rice paddy areas, implying potentially significant emissions from new aquaculture activities, which are thought to be primarily located on converted rice paddies

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Attribution of the 2020 surge in atmospheric methane by inverse analysis of GOSAT observations

    No full text
    Atmospheric methane mixing ratio rose by 15 ppbv between 2019 and 2020, the fastest growth rate on record. We conduct a global inverse analysis of 2019–2020 Greenhouse Gases Observing Satellite observations of atmospheric methane to analyze the combination of sources and sinks driving this surge. The imbalance between sources and sinks of atmospheric methane increased by 31 Tg a ^−1 from 2019 to 2020, representing a 36 Tg a ^−1 forcing (direct changes in methane emissions and OH concentrations) on the methane budget away from steady state. 86% of the forcing in the base inversion is from increasing emissions (82 ± 18% in the nine-member inversion ensemble), and only 14% is from decrease in tropospheric OH. Half of the increase in emissions is from Africa (15 Tg a ^−1 ) and appears to be driven by wetland inundation. There is also a large relative increase in emissions from Canada and Alaska (4.8 Tg a ^−1 , 24%) that could be driven by temperature sensitivity of boreal wetland emissions

    National quantifications of methane emissions from fuel exploitation using high resolution inversions of satellite observations

    No full text
    Abstract Reducing methane emissions from fossil fuel exploitation (oil, gas, coal) is an important target for climate policy, but current national emission inventories submitted to the United Nations Framework Convention on Climate Change (UNFCCC) are highly uncertain. Here we use 22 months (May 2018-Feb 2020) of satellite observations from the TROPOMI instrument to better quantify national emissions worldwide by inverse analysis at up to 50 km resolution. We find global emissions of 62.7 ± 11.5 (2σ) Tg a−1 for oil-gas and 32.7 ± 5.2 Tg a−1 for coal. Oil-gas emissions are 30% higher than the global total from UNFCCC reports, mainly due to under-reporting by the four largest emitters including the US, Russia, Venezuela, and Turkmenistan. Eight countries have methane emission intensities from the oil-gas sector exceeding 5% of their gas production (20% for Venezuela, Iraq, and Angola), and lowering these intensities to the global average level of 2.4% would reduce global oil-gas emissions by 11 Tg a−1 or 18%

    Replication Data for: Satellite discovery of anomalously large methane point sources from oil/gas production

    No full text
    GHGSat-D methane data for: Satellite discovery of anomalously large methane point sources from oil/gas production, Figure 1. The data are stored as Python Numpy .npy files
    corecore