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Abstract1

Source characteristics of methane emissions in Africa are not well understood, de-2

spite methane’s role as the second largest anthropogenic contributor to climate change.3

Here, we present monthly methane emission estimates from Algeria, Egypt, Libya, Mo-4

rocco and Tunisia between 2010-2017, a region dominated by anthropogenic emissions.5

Emissions are estimated using observations from the GOSAT satellite and a Markov6

chain Monte Carlo inverse algorithm. Our top-down North African methane emissions7

are generally in line with inventory estimates and national reporting to the United8

Nations Framework Convention on Climate Change (UNFCCC). An exception is that9

summertime emissions from the Nile Delta region are considerably higher those that10
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predicted by inventory estimates, possibly due to agricultural practices and the influ-11

ence of the Nile.12

Introduction13

Global atmospheric concentrations methane have been rising since a hiatus was observed14

between the early 2000s and 20071. The reason for this pause and renewed growth is poorly15

understood; previous studies have implicated the main drivers of change to be an increase in16

anthropogenic emissions2,3, natural sources4, reduced biomass burning and rising fossil fuel17

emissions3 or a potential change in the main sink of methane, the global concentrations of18

atmospheric OH radicals5,6.19

With very few ground-based measurements of methane on the African continent, there20

is uncertainty about the potential role that African methane sources have played in recent21

growth. There is evidence that methane emissions from tropical Africa could explain around22

a third of a global emissions increase, primarily due to a rise in emissions from the Sudd in23

South Sudan7,8. This paper presents estimates of methane emissions between 2010-2017 from24

North Africa, here defined as Algeria, Egypt, Libya, Morocco (including Western Sahara)25

and Tunisia.26

In this region, fugitive emissions from oil and natural gas production dominate and ac-27

count for around half of the total bottom-up estimated emissions9. Between 2010-2017 North28

Africa produced between 2.3 - 4.3 % of global petroleum and ∼5 % of natural gas10. See the29

supporting information for a further breakdown of North Africa’s fossil fuel production.30

As non-Annex I countries under the United Nations Framework Convention on Climate31

Change (UNFCCC), these nations are not required to submit annual greenhouse gas reports.32

However, all countries, except Libya, have submitted anthropogenic emissions estimates33

through National Communications to the UNFCCC, although these emission estimates may34

have high uncertainties. Algeria has estimated its methane emissions for 2000 (i.e. before35
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this period of study) as 1.58 Tg11; Egypt has estimated its 2015 emissions as 1.98 Tg12;36

Morocco as 0.51 Tg in 2010, 0.54 Tg in 2012, 0.55 Tg in 2014 and 0.59 Tg in 201613; and37

Tunisia as 0.28 Tg in 2010 and 0.29 Tg in 201214.38

Given the paucity of ground-based methane measurements in North Africa, we have39

used observations of column-average methane concentrations from the GOSAT satellite,40

combined with the atmospheric transport model NAME (Numerical Atmospheric dispersion41

Modelling Environment)15 to infer methane emissions. Below, we outline the emissions42

inference framework, present our result for each country, and discuss implications for the43

methane budget of this region.44

Materials and Methods45

GOSAT Observations46

We use observations of dry air column-average methane concentrations to inferencer methane47

emissions in North Africa. These measurements are made from the Thermal And Near-48

infrared Sensor for carbon Observation Fourier Transform Spectrometer (TANSO-FTS) on49

board the GOSAT satellite16. The product comes from the University of Leicester GOSAT-50

OPCR v7.2 proxy dry air column-average methane retrieval17,18, XCH4 proxy. The XCH4 proxy51

retrieval uses total column values of methane (XCH4) and carbon dioxide (XCO2) using52

spectral windows at 1.65 and 1.61 µm for XCH4 and XCO2 respectively. The ratio of XCH453

to XCO2 is multiplied by an model ensemble-derived estimate of column-average carbon54

dioxide mole fraction to estimate XCH4 proxy. This method produces robust retrievals in the55

presence of clouds and aerosols due to their common influence on XCH4 and XCO2, however56

may be subject to larger uncertainties in regions where CO2 measurements are not prevalent.57

We limit the XCH4 observations to the spatial extent of -15◦ W to 38◦ E and 15◦ N to 34 ◦ N58

and bin the observations to the resolution of the output of the atmospheric transport model59

used in the inversion (NAME transport model section,0.352◦ by 0.234◦). Between April 201060
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and the end of 2017, there is a mean of 1119 observations per month, with little seasonality61

in observation coverage over this region (see Figure S4). Figure S5 shows the binned average62

GOSAT XCH4 proxy observations for November 2011 - April 2012 and May 2012 - October63

2012.64

NAME transport model65

We use the approach outlined in Ganesan et al. 19 and Tunnicliffe et al. 20 to relate XCH466

observations to surface emissions. The sensitivity of the XCH4 proxy measurements to surface67

emissions are derived using the Lagrangian particle dispersion model NAME15 run in back-68

ward mode. The sensitivities derived from the NAME model output have a resolution of69

0.352◦ by 0.234◦ and we employ a simulation domain of -50 to 87 ◦E by -15 to 41 ◦N degrees70

(Figure S6) to a height of 20 km.71

Meteorological fields from the Met Office Unified Model model21 drive transport within72

NAME, and have a temporal resolution of three hours and a spatial resolution that increases73

throughout the study period from 0.352 by 0.234◦ in 2010 to 0.141 by 0.094◦ in 2017. We74

run NAME for each of the 20 vertical levels defined within the XCH4 proxy product. Parti-75

cles are released from each level and the interaction with the surface (below 40 magl) and76

boundaries are recorded20. We combine the sensitivities from the vertical layers into a single77

sensitivity of the XCH4 proxy observation to emissions by weighting each level according to78

the corresponding GOSAT averaging kernel and pressure weight from the retrieval19,22. The79

boundary sensitivities are combined into four scaling parameters each month in the inver-80

sion, which uniformly scales the a priori boundary condition curtains on each horizontal81

boundary.82

We assume that the modelling error is stochastic with an uncertain standard deviation,83

where the standard deviation is given a prior 95% uncertainty of 5.5-14.7 ppb.84
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A priori methane emissions85

We base our a priori estimates of methane emissions on various sources, regridded to that of86

the output of the transport model (NAME transport model section). Fugitive emissions from87

oil, coal and gas, the dominant a priori emissions source in North Africa, are from Scarpelli88

et al. 9 and are a static annual climatology. The GFED v4.1 database23 provides the emissions89

for natural and anthropogenic biomass burning. Emissions from wetlands come from the90

mean of the ensembles of the WetCHARTs database24, where values for 2015 are repeated91

for 2016 and 2017. Any emissions from rice paddies come from a monthly inventory for the92

year 200025. Other anthropogenic emissions, such as enteric fermentation, landfills, road93

transport, shipping and manufacturing, come from the EDGAR v.4.3.2 emissions inventory94

by sector for 201226. We assume all other emissions (e.g. termites and geological sources) to95

be negligible. Inventory estimates for Morocco are generally in line with emissions reported96

to the UNFCCC. Egypt’s 2015 reporting is around 50% higher than the a priori emissions,97

and Tunisia’s reporting is around 30-35% higher.98

The a priori emissions for the region are 5.0 Tg year−1 between 2010 - 2017 (5.1 Tg year−1
99

in 2015). We treat these emissions as very uncertain, and assign a 95% uncertainty range for100

the a priori emissions of 2.7-12.8 Tg year−1 in 2010 to 2.7-13.0 Tg year−1 in 2017, following101

a log-normal distribution, where the mode of the distribution is the a priori emissions. This102

distribution has been chosen as it approximately follows the geometric standard deviation103

uncertainty (for a lognormal 68 % uncertainty) for Annex I countries in Scarpelli et al. 9 , the104

dominant emissions source.105

Boundary conditions106

As we infer emissions in a limited domain, the sensitivity of the methane concentrations107

to contributions from the domain edges must be quantified. The a priori boundary condi-108

tion mole fraction curtains at the domain edges come from the ECMWF CAMS reanalysis109

database (which has not been constrained using GOSAT data)27. We take the a priori110
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estimate each month to be the mean state at the NAME domain edges. The derived emis-111

sions are mostly insensitive to the choice of a priori mole fraction at the boundary (see the112

supporting information).113

Inverse Method114

Here we represent the problem of emissions and boundary condition inference as a statistical115

model. We denote the XCHproxy
4 observations (see section GOSAT Observations) as the116

vector, y, which can be modelled by the linear forward model117

y = Hx + Ku + ε, (1)

where H is the sensitivity matrix to emissions at the surface and K is the sensitivity to118

the boundaries, produced using NAME (section NAME transport model) with each row119

multiplied by the a priori estimates from sections and for H and K respectively, x contains120

a vector which scales the a priori emissions by some factor, u is as x for the boundary121

conditions, and ε is the stochastic model-measurement error. We assume that all observations122

in y are independent and identically distributed with a known stochastic measurement error123

σobs and unknown model error σmod, which combine as σy =
√
σ2
obs + σ2

mod (in ppb), where124

the resulting covariance matrix is R = Iσ2
y, and I is the identity matrix. We follow a typical125

Bayesian framework,126

p(x,u, σmod | y) ∝ p(y | x,u, σmod) p(x,u, σmod). (2)
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Our hierarchical model is then

y | x,u, σmod
iid∼ N (Hx + Ku,R), (3)

x
iid∼ LN (0.16, 0.42), (4)

u
iid∼ LN (0.004, 0.022), (5)

σmod ∼ LN (2.2, 0.252), (6)

where N (·) and LN (·) refer to the Normal and Lognormal distributions respectively.127

We infer the emissions and influence from the boundary conditions using hierarchical128

Bayesian inference28. Sampling uses a two-stage sampler as in Say et al. 29 . Firstly, a129

No-U-Turn (NUTS) sampler30 samples the latent field x. A NUTS sampler is an exten-130

sion to Hamiltonian Monte Carlo, which has previously been used for inference of trace-gas131

emissions31,32. A slice sampler33, which computationally faster per iteration, samples the132

hyperparameter σmod as a second step in the sampling process.133

We infer methane emissions for each calendar month between April 2010 through 2017,134

and assume that methane emissions are constant over each period of inference.135

The elements of the latent field containing emissions are a basis function representation136

of the NAME domain. We follow the approach of Say et al. 29 , and optimise 100 basis137

functions based on the a priori above-background mole fraction contribution in space using138

a quadtree algorithm34. The algorithm recursively divides the basis function into four new139

basis functions until the desired number of basis functions is achieved, giving a higher spatial140

resolution where there is a greater above-background a priori mole fraction contribution and141

lower elsewhere (see Fig. S6).142

We run the NUTS-slice sampler over a total of 250,000 iterations (burning the first143

50,000), with multiple chains running in parallel. To check for convergence we use a Gelman-144

Rubin diagnostic35, ensuring all chains reach a criteria less than 1.05. The uncertainty in145

the inferred emissions are quantified using the Highest Posterior Density (HPD) region (see146
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Box and Tiao 36 and supporting information).147

Under this statistical model it is possible to infer the latent variables, namely the emis-148

sions of methane and the boundary conditions, and the hyperparameter controlling the149

uncertainty in the model error.150

Results and Discussion151

For Morocco, Algeria, Tunisia and Libya, the a priori estimates and UNFCCC National152

Communications fall within the posterior 95% uncertainty, or are slightly underestimated,153

for periods where reports are available. This would suggest that the inventories detailed in154

the A priori methane emissions section, and the emissions estimates in UNFCCC National155

Communications are largely consistent for these countries. Figure 1 shows the posterior156

estimated emissions over the study period, where all emissions in the region were constrained157

by the inversion (Figure S7). Figure S8 and Table S1 present these emissions as annual158

means.159

Estimated emissions from Egypt are consistently larger than the a priori estimates, al-160

though they are smaller in 2015 than those reported in their National Communication. The161

most noticeable discrepancy to the a priori estimate (Figure 1) is that Egypt has large, unex-162

pected methane emission during the summer months, lasting from around June to October.163

These summer emissions are uncorrelated with aerosol optical depth measurements in the164

region37. An increase in emissions for these months is observed in the a priori estimates,165

attributed to rice cultivation25, although to a much lesser extent than in the posterior es-166

timates. These unexpected emissions come from north of Egypt, in the region containing167

the Nile Delta, starting approximately north of the Aswan High Dam. Figure 3a shows168

the the posterior mean flux estimate, and Figure 3b shows the a priori flux, as an average169

for August over all years. These emissions in Egypt coincide with the summer agricultural170

growing season, with high temperatures and high levels of irrigation. This is in contrast171
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to the rest of North Africa, where the main growing season is during the winter months,172

and primarily driven by rainfall (see the supporting information for more discussion on agri-173

cultural methane emissions outside of Egypt). Irrigation of crops in Egypt is generally fed174

by branching canals, and drainage ditches38, necessary due to the low levels of rainfall in175

the region. As a result, high levels of irrigation are needed during the summer, with rice176

and summer maize requiring the highest gross irrigation in the region39 and sugarcane re-177

quiring the highest levels of irrigation per square metre, followed by rice40. Our a priori178

annual mean estimate for agriculture (including rice) in Egypt using bottom up inventories179

is 0.40 Tg, which is much smaller than 0.77 Tg in Egypt’s 2015 UNFCCC reporting. Figure180

2 shows the mean posterior estimated emissions for each month, alongside the daily mean181

temperature at Cairo for each month, and the monthly satellite-estimated discharge from182

Lake Nasser (feeding the Nile after the Aswan High Dam) from 2005-200841. Although the183

satellite-derived estimated discharge is not a direct indicator of water used for irrigation, it is184

an indicator of the inflow to the Nile Delta. Figure 2 shows that the maximum in emissions185

coincides within ± 1 month, with the maximum temperature or discharge. An exception is186

that there is little to no summertime emissions increase in 2015, when North Africa expe-187

rienced a drought42. Water levels of Lake Nasser43 generally sharply drop in summertime,188

coincident with larger discharge (Figure S9). Figure S9 shows that 2015 water levels had no189

such drop and rise, perhaps indicating changes to discharge into the Nile Delta in 2015. This190

is likely due to the droughts caused by the strong El Niño event in 2015, which impacted191

the Nile river flow44–46 and global methane emissions47. It is therefore likely that current192

agricultural flooding practices, combined with high temperatures, are a major driver in the193

Nile Delta’s methane emissions. These findings corroborate evidence of the influence of the194

(White) Nile on Africa’s methane emissions7.195

The biogeochemistry of methane release from fresh water is difficult to generalise, al-196

though an increase in the area of water bodies within Egypt, coupled with warmer temper-197

atures, would likely lead to increased methane emissions48–51. Previous studies show that198
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river outflows from dammed reservoirs can release considerable levels of methane52, although199

these processes have generally been observed at distances far closer to the dam itself than200

from the Aswan High Dam to the bulk of emissions in the Nile Delta53,54.201

For validation of our results, we use weekly flask-air measurements from the Italian island202

of Lampedusa55,56 (12.62◦E, 35.52◦N), which provides continuous measurements throughout203

our period of study. Measured and forward modelled observations agree qualitatively (Fig.204

S3), although the low-frequency of the measurements, which are primarily representative of205

background air, make a more rigorous inter-comparison challenging.206

Methane emissions from North Africa do not appear to have changed significantly (overall207

trend of −0.2± 0.6 Tg year−1, 95% uncertainty). However, our finding of a substantial and208

unexpected seasonal source in the Nile Delta suggests that that agricultural emissions from209

the region have been under-estimated in our a priori estimate. This may indicate a wider issue210

of under-quantified emissions from agronomically managed temporary wetland ecosystems.211

Ever increasing volumes of earth observation data at higher spatial resolution will allow212

further regional scale studies to monitor changes in methane emission trends.213

Code and data availability214

ECMWF CAMS reanalysis data were downloaded from the Copernicus Atmosphere Monitor-215

ing Service (CAMS) Atmosphere Data Store (ADS) https://ads.atmosphere.copernicus.216

eu/cdsapp#!/dataset/cams-global-reanalysis-eac4?tab=overview. Lake products cour-217

tesy of the USDA/NASA G-REALM program at https://ipad.fas.usda.gov/cropexplorer/218

global_reservoir/. The latest version of the University of Leicester GOSAT Proxy v9.0219

XCH4 data are available from the Centre for Environmental Data Analysis data repository220

at https://doi.org/10.5285/18ef8247f52a4cb6a14013f8235cc1eb (Parker and Boesch,221

2020). The version used in this study (v7.2) is available from the Copernicus C3S Cli-222

mate Data Store at https://cds.climate.copernicus.eu. Flask-air measurements from223
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Lampedusa are available at ftp://aftp.cmdl.noaa.gov/data/trace_gases/ch4/flask/224

surface/. The inversion results from this work, including all inputs to the inverse model,225

is available at https://osf.io/cdae3/ (Western 2021; DOI 10.17605/OSF.IO/CDAE3).226

Access to the inversion code is available on request from the corresponding author.227
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ning, A. C.; Gloor, E.; Worthy, D. E. J. et al. Rising atmospheric methane: 2007-2014262

growth and isotopic shift. Global Biogeochemical Cycles 2016, 30, 1356–1370.263

(5) Rigby, M.; Montzka, S. A.; Prinn, R. G.; White, J. W. C.; Young, D.; O’Doherty, S.;264

Lunt, M. F.; Ganesan, A. L.; Manning, A. J.; Simmonds, P. G.; Salameh, P. K.;265

Harth, C. M.; Mühle, J.; Weiss, R. F.; Fraser, P. J.; Steele, L. P.; Krummel, P. B.;266

McCulloch, A.; Park, S. Role of atmospheric oxidation in recent methane growth. Pro-267

ceedings of the National Academy of Sciences 2017, 114, 5373–5377.268

(6) Turner, A. J.; Frankenberg, C.; Wennberg, P. O.; Jacob, D. J. Ambiguity in the causes269

12



for decadal trends in atmospheric methane and hydroxyl. Proceedings of the National270

Academy of Sciences 2017, 114, 5367–5372.271

(7) Lunt, M. F.; Palmer, P. I.; Feng, L.; Taylor, C. M.; Boesch, H.; Parker, R. J. An increase272

in methane emissions from tropical Africa between 2010 and 2016 inferred from satellite273

data. Atmospheric Chemistry and Physics 2019, 19, 14721–14740.274

(8) Pandey, S.; Houweling, S.; Lorente, A.; Borsdorff, T.; Tsivlidou, M.; Bloom, A. A.;275

Poulter, B.; Zhang, Z.; Aben, I. Using satellite data to identify the methane emission276

controls of South Sudan’s wetlands. Biogeosciences 2021, 18, 557–572.277

(9) Scarpelli, T. R.; Jacob, D. J.; Maasakkers, J. D.; Sulprizio, M. P.; Sheng, J.-X.; Rose, K.;278

Romeo, L.; Worden, J. R.; Janssens-Maenhout, G. A global gridded (0.1◦ × 0.1◦)279

inventory of methane emissions from oil, gas, and coal exploitation based on national280

reports to the United Nations Framework Convention on Climate Change. Earth System281

Science Data 2020, 12, 563–575.282

(10) EIA, EIA: International Energy Statistics. http://eia.gov/beta/international/283

(accessed 22 January 2021).284

(11) Ministere de l’Amenagement du Territoire et de l’Environnement, Seconde Communi-285

cation Nationale de l’Algerie sur les Changements Climatiques a la CCNUCC. 2010.286

(12) Ministry of Environment: Egyptian Environmental Affairs Agency, Egypt’s First Bien-287

nial Update Report to the United Nations Framework Convention on Climate Change.288

2018.289
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Figure 1: Emissions from countries in North Africa between 2010-2017: (a) Egypt, (b)
Morocco, (c)Libya, (d) Tunisia and (e) Algeria. The blue line shows the posterior mean
emissions for each month, and the blue shading shows the 95 % HPD region. The orange
line shows the a priori emissions for each country, and the black lines show annual emissions
reported to the UNFCCC.
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Figure 2: The mean posterior estimated emissions for Egypt for each month between 2010-
2017 (orange), the daily mean temperature at Cairo for each month (red), and the monthly
satellite-estimated discharge from Lake Nasser (feeding the Nile after the Aswan High Dam)
from 2005-200841 (blue).
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Figure 3: A map showing (a) the posterior mean estimated flux and (b) the a priori flux
from the North African region as an average for August over all years.
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North African petroleum and natural gas production

Production of petroleum products in Algeria, the main producer in the region, have re-

mained steady over the period of study, at around 1881 thousand barrels per day (TBPD)

in 2010, reducing to around 1637 TBPD by the end of 20171 (Figure S1). Libya, the second

largest producer, has had large fluctuations in production since the Arab Spring2, starting in

Febrary 2011. Production has not recovered since 2010, where annual production was 1844

TBPD, and hit an annual low of 478 TBPD in 2016. Production in Egypt has remained

1
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fairly constant over the period of study, with annual production varying between 655 - 714

TBPD. Natural gas production is again largest in Algeria, followed by Egypt. Production in

Algeria remained largely unchanged between 2010-2015 (∼185 billion cubic metres, BCM),

and declined slightly in Egypt from 67 to 49 BCM between 2010-2015. Libya’s post-2010 gas

production is much smaller in comparison (10-18 BCM), but was 30 BCM in 2010. Tunisia

and Morocco are comparatively minor producers of oil and gas.

Figure S1: Oil (a) and natural gas (b) production in Algeria, Egypt, Libya, Morocco and
Tunisia. Any natural gas production in Morocco was negligible. Production data for nat-
ural gas were only available until 2015. The data are from the U.S. Energy Information
Administration1.

Results using different a priori boundary conditions

We repeat our results to test the influence of the chosen a priori mole fraction at the model

domain boundary. The inverse method and sensitivity to the boundaries was treated as in

the main text, but with the a priori mole fraction at the domain boundary taken from the

ECMWF CAMS CH4 flux inversion product v17r1 (https://ads.atmosphere.copernicus.

eu/cdsapp#!/dataset/cams-global-greenhouse-gas-inversion?tab=overview, accessed

22 April 2021). The data product is produced using surface observations only. See https://

atmosphere.copernicus.eu/sites/default/files/2018-12/CAMS73_2015SC3_D73.2.4.

4-2017_201811_validation_1990-2017_v1.pdf for more information (accessed 22 April

2

https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-greenhouse-gas-inversion?tab=overview
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-greenhouse-gas-inversion?tab=overview
https://atmosphere.copernicus.eu/sites/default/files/2018-12/CAMS73_2015SC3_D73.2.4.4-2017_201811_validation_1990-2017_v1.pdf
https://atmosphere.copernicus.eu/sites/default/files/2018-12/CAMS73_2015SC3_D73.2.4.4-2017_201811_validation_1990-2017_v1.pdf
https://atmosphere.copernicus.eu/sites/default/files/2018-12/CAMS73_2015SC3_D73.2.4.4-2017_201811_validation_1990-2017_v1.pdf


2021).

Figure S2: Emissions from countries in North Africa between 2010-2017 using different a
priori mole fractions at the boundary to that in the main text. (a) Egypt, (b) Morocco, (c)
Libya, (d) Tunisia and (e) Algeria. The blue line shows the posterior mean emissions for
each month, and the blue shading shows the 95 % HPD region. The orange line shows the a
priori emissions for each country, and the black lines show annual emissions reported to the
UNFCCC.

Figure S2 shows the emissions time series from the five North African countries (as

Figure 1, main text) using the alternate a priori mole fraction at the boundary, as described.

Emissions do not change substantially from those presented in the main text and do not

change any of the conclusions drawn, although some small differences exist. Most notably,

summertime emissions peaks in Egypt are not as high as in the main text, but still remain
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elevated above that observed in the a priori emissions estimates and exhibit a seasonal cycle.

Highest Posterior Density region

The Highest Posterior Density (HPD) region is the narrowest region, R, in the total posterior

parameter space that holds probability content (1 − α). This is achieved if the following

conditions are fulfilled,

1. p{x ∈ R | y} = (1− α)

2. for x1 ∈ R and x2 /∈ R, p(x1 | y) ≥ p(x2 | y).

Agricultural emissions outside of Egypt

Unlike in Egypt, where irrigation for agriculture is dependent on the Nile, agricultural prac-

tices in the rest of North Africa are dependent on precipitation as their main water source3.

The agricultural sector is the largest contributor to gross domestic product in both Alge-

ria and Libya3. There is more rainfall in North Africa during the Northern Hemisphere

winter, when temperatures are lower, with little rainfall and high temperatures during the

Northern Hemisphere summer4–6. Therefore, it is expected, given the observations in Egypt,

that emissions from agronomically managed temporary wetlands in North Africa, other than

Egypt, would have higher emissions in winter months (during their crop growing season with

maximum rainfall), than in the summer months. In addition, livestock in North Africa are

slaughtered during times of fodder scarcity, leading to lower emissions from ruminants during

times of low rainfall3.

A pattern of higher North African methane emissions in winter months during the agri-

cultural season is somewhat apparent in our inferred emissions (see Figure 1, main text),

particularly in Algeria, although to a much lesser extent than the seasonality in Egypt.

This may be explained by the lower temperatures during the agricultural season, in contrast
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to high summer temperatures during Egypt’s agricultural season, leading to lower rates of

methanogenesis7–10.

Validation against measurements made at Lampedusa

Figure S3: Methane concentrations (black circles) measured at Lampedusa measurement
station (12.62◦E, 35.52◦N) and forward modelled concentrations (orange lines) using the
estimated emissions and NAME-derived sensitivities. Also shown are the forward modelled
a priori concentrations (dotted red line), modelled using the a priori emissions and NAME-
derived sensitivities.

The paucity of in situ measurement data in the region of study, which motivates the

use satellite-observation derived emissions, makes detailed validation against an independent

dataset difficult. Here we validate our emissions by comparing our posterior model to weekly

flask-air samples from the Italian island of Lampedusa11,12 (12.62◦E, 35.52◦N).

The modelled concentrations are calculated from NAME footprints, simulated using
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20,000 particles released for a 1-hour period when each measurement was made at a height

of 10 ± 10 metres above ground level. The particles were tracked for 30 days and their

interaction with the surface and boundaries were recorded as described for GOSAT in the

main text.

Given the low frequency of the measurements, which are made to sample background

conditions, a rigorous validation of the posterior emissions is difficult. In addition, errors in

the transport and meteorology using NAME may compound errors in the forward modelled

concentrations using GOSAT- and NAME-derived emissions estimates. It is clear, however,

that the posterior mean predicted mole fractions greatly improve the fit to observations

over the a priori predicted concentrations, as can be seen in Figure , where the a priori

predicted concentration falls far below the observations. Some simple statistics using the

posterior mean predicted and a priori predicted mole fraction shows an improvement to the

root-mean-square error from 66 ppb to 21 ppb, and an improvement to the R2 statistic from

0.37 to 0.54.
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Supplementary Tables and Figures

Figure S4: The number of GOSAT XCH4 proxy observations per month used in the inversion.

Table S1: Annual estimates of mean posterior methane emissions and the 95% uncertainty
range. The annual emissions are estimated from the monthly estimates within each year, as-
suming that the posterior distributions are independent, which will most likely underestimate
the true annual uncertainty.

Annual emissions (Tg year−1)
Year Egypt Morocco Libya Tunisia Algeria
2010 1.50 (1.35, 1.66) 0.78 (0.62, 0.94) 1.16 (1.01, 1.30) 0.27 (0.22, 0.31) 2.00 (1.75, 2.25)
2011 1.76 (1.60 1.93) 0.65 (0.56, 0.74) 1.31 (1.18, 1.45) 0.24 (0.21, 0.28) 1.80 (1.65, 1.96)
2012 1.64 (1.49, 1.80) 0.67 (0.58, 0.77) 1.26 (1.13, 1.39) 0.25 (0.22, 0.29) 1.85 (1.71, 2.00)
2013 1.64 (1.48, 1.79) 0.75 (0.64, 0.86) 1.31 (1.17, 1.45) 0.26 (0.22, 0.30) 2.07 (1.88, 2.26)
2014 1.61 (1.47, 1.75) 0.66 (0.57, 0.77) 1.32 (1.19, 1.45) 0.27 (0.23, 0.31) 2.01 (1.84, 2.18)
2015 1.49 (1.34, 1.64) 0.69 (0.59, 0.79) 1.33 (1.19, 1.47) 0.27 (0.23, 0.30) 2.00 (1.83, 2.17)
2016 1.77 (1.63, 1.92) 0.65 (0.55, 0.75) 1.30 (1.17, 1.43) 0.26 (0.22, 0.29) 1.95 (1.77, 2.14)
2017 1.82 (1.67, 1.98) 0.55 (0.48, 0.63) 1.33 (1.20, 1.46) 0.23 (0.20, 0.27) 1.82 (1.68, 1.96)
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Figure S5: The average GOSAT XCH4 proxy observations binned to the resolution of the
NAME dispersion model output for (a) November 2011 - April 2012 and (b) May 2012 -
October 2012.
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Figure S6: The basis functions representation of the emissions within the model domain for
March 2013.
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Figure S7: The mean ratio of the range of the upper and lower bounds of the posterior to
prior 95% HPD region in space. This mean is over all months estimated within the study.
The map shows that, on average in the region of study, the range between the 97.5% and
2.5% uncertainty bound in the posterior distribution is, at most, 10% of that in the prior,
or, equivalently, shows at least a 90% uncertainty reduction.
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Figure S8: Methane emissions estimates in North Africa presented as annual means. The
lines are posterior mean emissions estimates, and the shading shows the 95% posterior un-
certainty. The dashed line shows the annual mean a priori emissions estimate and the crosses
show estimates of methane emissions submitted as national reporting to the UNFCCC. The
emissions estimates are tabulated in Table S1. The annual emissions are estimated from the
monthly estimates within each year, assuming that the posterior distributions are indepen-
dent, which will most likely underestimate the true annual uncertainty.
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Figure S9: Lake Nasser water level from satellite radar and altimetry13. The water level
generally drops and rises during midsummer, although 2015 seems anomalous in this trend.
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