43 research outputs found

    The microRNA-Processing Enzyme Dicer Is Essential for Thyroid Function

    Get PDF
    Dicer is a type III ribonuclease required for the biogenesis of microRNAs (miRNAs), a class of small non-coding RNAs regulating gene expression at the post-transcriptional level. To explore the functional role of miRNAs in thyroid gland function, we generated a thyrocyte-specific Dicer conditional knockout mouse. Here we show that development and early differentiation of the thyroid gland are not affected by the absence of Dicer, while severe hypothyroidism gradually develops after birth, leading to reduced body weight and shortened life span. Histological and molecular characterization of knockout mice reveals a dramatic loss of the thyroid gland follicular architecture associated with functional aberrations and down-regulation of several differentiation markers. The data presented in this study show for the first time that an intact miRNAs processing machinery is essential for thyroid physiology, suggesting that deregulation of specific miRNAs could be also involved in human thyroid dysfunctions

    Age-Related Reference Intervals of the Main Biochemical and Hematological Parameters in C57BL/6J, 129SV/EV and C3H/HeJ Mouse Strains

    Get PDF
    BACKGROUND: Although the mouse is the animal model most widely used to study the pathogenesis and treatment of human diseases, reference values for biochemical parameters are scanty or lacking for the most frequently used strains. We therefore evaluated these parameters in the C57BL/6J, 129SV/EV and C3H/HeJ mice. METHODOLOGY/PRINCIPAL FINDINGS: We measured by dry chemistry 26 analytes relative to electrolyte balance, lipoprotein metabolism, and muscle/heart, liver, kidney and pancreas functions, and by automated blood counter 5 hematological parameters in 30 animals (15 male and 15 female) of each mouse strain at three age ranges: 1-2 months, 3-8 months and 9-12 months. Whole blood was collected from the retro-orbital sinus. We used quality control procedures to investigate analytical imprecision and inaccuracy. Reference values were calculated by non parametric methods (median and 2.5(th) and 97.5(th) percentiles). The Mann-Whitney and Kruskal-Wallis tests were used for between-group comparisons. Median levels of GLU, LDH, Chol and BUN were higher, and LPS, AST, ALP and CHE were lower in males than in females (p range: 0.05-0.001). Inter-strain differences were observed for: (1) GLU, t-Bil, K+, Ca++, PO(4)- (p<0.05) and for TAG, Chol, AST, Fe++ (p<0.001) in 4-8 month-old animals; (2) for CK, Crea, Mg++, Na++, K+, Cl- (p<0.05) and BUN (p<0.001) in 2- and in 10-12 month-old mice; and (3) for WBC, RBC, HGB, HCT and PLT (p<0.05) during the 1 year life span. CONCLUSION/SIGNIFICANCE: Our results indicate that metabolic variations in C57BL/6J, 129SV/EV and C3H/HeJ mice after therapeutic intervention should be evaluated against gender- and age-dependent reference intervals

    COVID-19 severity and mortality in patients with CLL: an update of the international ERIC and Campus CLL study

    Get PDF
    Patients with chronic lymphocytic leukemia (CLL) may be more susceptible to Coronavirus disease 2019 (COVID-19) due to age, disease, and treatment-related immunosuppression. We aimed to assess risk factors of outcome and elucidate the impact of CLL-directed treatments on the course of COVID-19. We conducted a retrospective, international study, collectively including 941 patients with CLL and confirmed COVID-19. Data from the beginning of the pandemic until March 16, 2021, were collected from 91 centers. The risk factors of case fatality rate (CFR), disease severity, and overall survival (OS) were investigated. OS analysis was restricted to patients with severe COVID-19 (definition: hospitalization with need of oxygen or admission into an intensive care unit). CFR in patients with severe COVID-19 was 38.4%. OS was inferior for patients in all treatment categories compared to untreated (p < 0.001). Untreated patients had a lower risk of death (HR = 0.54, 95% CI:0.41–0.72). The risk of death was higher for older patients and those suffering from cardiac failure (HR = 1.03, 95% CI:1.02–1.04; HR = 1.79, 95% CI:1.04–3.07, respectively). Age, CLL-directed treatment, and cardiac failure were significant risk factors of OS. Untreated patients had a better chance of survival than those on treatment or recently treated

    The evolving landscape of COVID‐19 and post‐COVID condition in patients with chronic lymphocytic leukemia: A study by ERIC, the European research initiative on CLL

    Get PDF
    In this retrospective international multicenter study, we describe the clinical characteristics and outcomes of patients with chronic lymphocytic leukemia (CLL) and related disorders (small lymphocytic lymphoma and high-count monoclonal B lymphocytosis) infected by SARS-CoV-2, including the development of post-COVID condition. Data from 1540 patients with CLL infected by SARS-CoV-2 from January 2020 to May 2022 were included in the analysis and assigned to four phases based on cases disposition and SARS-CoV-2 variants emergence. Post-COVID condition was defined according to the WHO criteria. Patients infected during the most recent phases of the pandemic, though carrying a higher comorbidity burden, were less often hospitalized, rarely needed intensive care unit admission, or died compared to patients infected during the initial phases. The 4-month overall survival (OS) improved through the phases, from 68% to 83%, p = .0015. Age, comorbidity, CLL-directed treatment, but not vaccination status, emerged as risk factors for mortality. Among survivors, 6.65% patients had a reinfection, usually milder than the initial one, and 16.5% developed post-COVID condition. The latter was characterized by fatigue, dyspnea, lasting cough, and impaired concentration. Infection severity was the only risk factor for developing post-COVID. The median time to resolution of the post-COVID condition was 4.7 months. OS in patients with CLL improved during the different phases of the pandemic, likely due to the improvement of prophylactic and therapeutic measures against SARS-CoV-2 as well as the emergence of milder variants. However, mortality remained relevant and a significant number of patients developed post-COVID conditions, warranting further investigations

    Selective dicer suppression in the kidney alters GSK3β/β-catenin pathways promoting a glomerulocystic disease

    No full text
    Dicer is a crucial enzyme for the maturation of miRNAs. Mutations in the Dicer gene are highly associated with Pleuro Pulmonary Blastoma-Family Dysplasia Syndrome (PPB-FDS, OMIM 601200), recently proposed to be renamed Dicer syndrome. Aside from the pulmonary phenotype (blastoma), renal nephroma and thyroid goiter are frequently part of Dicer syndrome. To investigate the renal phenotype, conditional knockout (cKO) mice for Dicer in Pax8 expressing cells were generated. Dicer cKO mice progressively develop a glomerulocystic phenotype coupled with urinary concentration impairment, proteinuria and severe renal failure. Higher cellular turnover of the parietal cells of Bowman's capsule precedes the development of the cysts and the primary cilium progressively disappears with cyst-enlargement. Upregulation of GSK3β precedes the development of the glomerulocystic phenotype. Downregulation of β-catenin in the renal cortex and its cytosolic removal in the cells lining the cysts may be associated with observed accumulation of GSK3β. Alterations of β-catenin regulating pathways could promote cystic degeneration as in other models. Thus, miRNAs are fundamental in preserving renal morphology and function. Alteration of the GSK3β/β-catenin pathway could be a crucial mechanism linking miRNA dysregulation and the development of a glomerulocystic disease

    AKT1E17K is oncogenic in mouse lung and cooperates with chemical carcinogens in inducing lung cancer

    No full text
    The hotspot AKT1E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6-2% of human lung cancers. Recently, we have demonstrated that AKT1E17K transforms immortalized human bronchial cells. Here by use of a transgenic Cre-inducible murine strain in the wild type Rosa26 (R26) locus (R26-AKT1E17K mice) we demonstrate that AKT1E17K is a bona-fide oncogene and plays a role in the development of lung cancer in vivo. In fact, we report that mutant AKT1E17K induces bronchial and/or bronchiolar hyperplastic lesions in murine lung epithelium, which progress to frank carcinoma at very low frequency, and accelerates tumor formation induced by chemical carcinogens. In conclusion, AKT1E17K induces hyperplasia of mouse lung epithelium in vivo and cooperates with urethane to induce the fully malignant phenotype

    Immunofluorescence analysis of differentiation in Dicer cKO thyroids at one month after birth.

    No full text
    <p>(A) Immunofluorescence analysis of Pax8 (green signal) in Ctr (A–C), Het (D–F) and cKO (G–I) thyroids at 1 month (scale bar: 20 µm). Nuclei are stained with DRAQ5 (blue signal). (B) Double immunofluorescence analysis of Nis and Nkx2.1 (green and red signal, respectively) in Ctr (A–D), Het (E–H) and cKO (I–L) thyroids at 1 month (scale bar: 20 µm). Nuclei are stained with DRAQ5 (blue signal). Ctr denotes Dcr1<sup>Flox/Flox</sup> mice, used as controls.</p

    CBX7 is a tumor suppressor in mice and humans

    No full text
    The CBX7 gene encodes a polycomb group protein that is known to be downregulated in many types of human cancers, although the role of this protein in carcinogenesis remains unclear. To shed light on this issue, we generated mice null for Cbx7. Mouse embryonic fibroblasts derived from these mice had a higher growth rate and reduced susceptibility to senescence compared with their WT counterparts. This was associated with upregulated expression of multiple cell cycle components, including cyclin E, which is known to play a key role in lung carcinogenesis in humans. Adult Cbx7-KO mice developed liver and lung adenomas and carcinomas. In in vivo and in vitro experiments, we demonstrated that CBX7 bound to the CCNE1 promoter in a complex that included HDAC2 and negatively regulated CCNE1 expression. Finally, we found that the lack of CBX7 protein expression in human lung carcinomas correlated with CCNE1 overexpression. These data suggest that CBX7 is a tumor suppressor and that its loss plays a key role in the pathogenesis of cancer
    corecore