399 research outputs found

    CARTOGRAPHY OF THE NATURAL AND CULTURAL HERITAGE IN THE ALTA VALLE DEL FITALIA (MESSINA)

    Get PDF
    La cartografia sta assumendo in questi ultimi anni un ruolo assai importante nella valorizzazione dei beni naturali e culturali grazie all’evoluzione tecnologica che consente l’elaborazione delle carte mediante le tecniche più avanzate (GIS, GPS, telerilevamento). Attraverso l’integrazione tra conoscenze scientifiche e informazioni dettagliate si rende possibile, infatti, la simulazione degli effetti della pianificazione su un territorio con la realizzazione di carte specifiche. In tale ottica l’indagine verterà sull’individuazione nell’alta valle del Fitalia, in provincia di Messina, di alcuni beni naturali, culturali e architettonici di notevole interesse la cui valorizzazione potrebbe contribuire a rilanciare l’economia di questo territorio nebroideo prevalentemente montuoso, penalizzato da un’economia residuale e, dunque, in fase di necrosi demografica e sociale. L’esame delle peculiarità naturali e culturali del territorio, insieme con un adeguato spoglio bibliografico e con l’analisi dei progetti fin qui elaborati dagli enti pubblici locali, contribuiranno alla realizzazione di strumenti cartografici innovativi in grado di contribuire alla valorizzazione dei beni naturali e culturali del territorio preso in oggetto.Cartography has played an increasingly important role, in recent years, in the evaluation of natural and cultural heritage, thanks to developments in technology that have made possible the elaboration of maps using the most advanced systems (GIS, GPS, remote sensing). A combination of scientific knowledge and detailed information allows for the simulation of the effects of regional planning with the creation of specific maps. This study aims to reveal the natural, cultural and architectonic heritage in the Alta Valle del Fitalia, in the province of Messina, which could contribute to improving the economy of this predominantly mountainous area of the Nebrodi, currently in a state of social, demographic and economic necrosis. An investigation into the natural and cultural aspects of the area, as well as an analysis of relevant literature and the projects carried out by local authorities, will contribute to the creation of innovative cartographic instruments capable of helping the development of the area’s cultural and natural heritage

    High-Precision Relative Locations of Two Microearthquake Clusters in Southeastern Sicily, Italy

    Get PDF
    In November 1999 and in January 2000, two microearthquake swarms occurred in Southeastern Sicily (Italy). They were analytically located in the depth range 17-25 km, some kilometers northward from the buried front of a regional foredeep, below the active thrust zone of the Sicily mountain chain. Their hypocentral distribution showed two distinct clusters, and comparison of the waveforms revealed clearly that the two swarms formed two distinct families of multiplet events. This led us: i) to carry out a precise relocation relative to two chosen master events of the families, and ii) to better define the geometrical structure of the two clusters. The cross-spectral method was applied to obtain precise readings of the wave onsets. SH-wave onsets were used instead of P-waves, as they showed clearer onsets and a good signal-to-noise ratio. Residuals of the relative locations showed small values, no more than several meters on average. The vertical extent of the two relocated clusters was 500 m and 250 m, respectively, while the horizontal extent was 250 m. Hypocenters of the first cluster clearly delineate a NNW trending plane with almost vertical dip, matching one nodal plane of the focal mechanism obtained as a composite solution of all events of the cluster. Given the considerable gap angles, because of unfavorable network geometry with respect to the events, the stability of our results was tested carrying out a Montecarlo experiment. Varying the onset times randomly in the range of 5 ms, a dispersion of the locations less than 10 m in longitude, and less than 50 m both in latitude and depth was found. Similar results were obtained when comparing relocations carried out with different master events. Thus, the overall geometrical characteristics of the clusters were not affected seriously by random errors. Considering the geo-structural framework of the region, together with the location and time evolution of the two clusters, fluids of plutonic origin are suggested as the trigger mechanism

    Seismicity, seismotectonics and crustal velocity structure of the Messina Strait (Italy)

    Get PDF
    The Messina Strait is the most important structural element interrupting the southernmost part of the Alpine-Apenninic orogenic belt, known as the Calabro-Peloritan Arc. It is being a narrow fan-shaped basin linking the Ionian Sea to the Tyrrhenian Sea. This region is affected by considerable seismic activity which mirrors the geodynamic processes due to the convergence between the African and the Eurasian plates. In the last four centuries, a significant number of disastrous earthquakes originated along the Arc. Among these, the most noteworthy event occurred on December 28, 1908 (known as the Reggio Calabria-Messina earthquake), in the Messina Strait area and caused a large tsunami and more than 100,000 casualties. In this research we focus on the relationships between the general tectonic setting, which characterize the Messina Strait and adjacent areas, seismicity patterns and the crustal structure. We analyzed a data set consisting of more than 300 events occurring in the years from 1999 to 2007, having a magnitude range from 1.0 to 3.8. This data set was exploited in a local earthquake tomography, by carrying out a simultaneous inversion of both the three-dimensional velocity structure and the distribution of seismic foci. We applied the “tomoADD” algorithm, which uses a combination of absolute and differential arrival times and a concept of self-adapting grid geometry, accounting for ray density encountered across the volume. With this method the accuracy of event locations is improved and velocity structure near the source region is resolved in more detail than standard tomography. Fault plane solutions were obtained for the major and best-recorded earthquakes. The obtained velocity images highlight vertical and lateral heterogeneities that can be associated with structural features striking from NNE-SSW to NE-SW. These results are consistent with important tectonic elements visible at the surface and the pattern delineated by earthquake locations and focal mechanisms

    Estimation of an optimum velocity model in the Calabro-Peloritan mountains – Assessment of the variance of model parameters and variability of earthquake locations

    Get PDF
    Accurate earthquake locations are of primary importance when studying the seismicity of a given area, they allow important inferences on the ongoing seismo-tectonics. Both, for standard, as well as for earthquake relative location techniques, the velocity parameters are kept fixed to a-priori values, that are assumed to be correct, and the observed traveltime residuals are minimised by adjusting the hypocentral parameters. However, the use of an unsuitable velocity model, can introduce systematic errors in the hypocentre location. Precise hypocentre locations and error estimate, therefore, require the simultaneous solution of both velocity and hypocentral parameters. We perform a simultaneous inversion of both the velocity structure and the hypocentre location in NE-Sicily and SW-Calabria (Italy). Since the density of the network is not sufficient for the identification of the 3D structure with a resolution of interest here, we restrict ourselves to a 1D inversion using the well-known code VELEST. A main goal of the paper is the analysis of the stability of the inverted model parameters. For this purpose we carry out a series of tests concerning the initial guesses of the velocity structure and locations used in the inversion. We further assess the uncertainties which originate from the finiteness of the available datasets carrying out resampling experiments. From these tests we conclude that the data catalogue is sufficient to constrain the inversion. We note that the uncertainties of the inverted velocities increases with depth. On the other hand the inverted velocity structure depends decisively on the initial guess as they tend to maintain the overall shape of the starting model. In order to derive an improved starting model we derive a guess for the probable depth of the MOHO. For this purpose we exploit considerations of the depth distribution of earthquake foci and of the shear strength of rock depending on its rheological behaviour at depth. In a second step we derived a smooth starting model and repeated the inversion. Strong discontinuities tend to attract hypocentre locations which may introduce biases to the earthquake location. Using the smooth starting model we obtained again a rather smooth model as final solution which gave the best travel-time residuals among all models discussed in this paper. This poses severe questions as to the significance of velocity discontinuities inferred from rather vague a-priori information. Besides this, the use of those smooth models widely avoids the problems of hypocentre locations being affected by sudden velocity jumps, an effect which can be extremely disturbing in relative location procedures. The differences of the velocity structure obtained with different starting models is larger than those encountered during the bootstrap test. This underscores the importance of the choice of the initial guess. Fortunately the effects of the uncertainties discussed here on the final locations turned out as limited, i. e., less than 1 km for the horizontal coordinates and less than 2 km for the depth

    Shear wave splitting changes associated with the 2001 volcanic eruption on Mt. Etna

    Get PDF
    The time delays and polarizations of shear wave splitting above small earthquakes show variations before the 2001 July 17–August 9 2001 flank eruption on Mt Etna, Sicily. Normalized time delays, measured by singular value decomposition, show a systematic increase starting several days before the onset of the eruption. On several occasions before the eruption, the polarization directions of the shear waves at Station MNT, closest to the eruption, show 90◦- flips where the faster and slower split shear waves exchange polarizations. The last 90◦-flip being 5 days before the onset of the eruption. The time delays also exhibit a sudden decrease shortly before the start of the eruption suggesting the possible occurrence of a ‘relaxation’ phenomena, due to crack coalescence. This behaviour has many similarities to that observed before a number of earthquakes elsewhere

    Stick-slip vs. stable sliding fault behaviour: A case-study using a multidisciplinary approach in the volcanic region of Mt. Etna (Italy)

    Get PDF
    Abstract In active volcanic zones, fault dynamics is considerably fast but it is often difficult to separate the pattern of nearly continuous large-scale volcanic processes (inflation/deflation processes, flank instability) from impulsive episodes such as dyke intrusions or coseismic fault displacements. At Etna, multidisciplinary studies on active faults whose activity does not strictly depend on volcanic processes, are relatively few. Here we present the case-study of the San Leonardello fault, an active structure located in the eastern flank of Mt. Etna characterised by a well-known seismic history. This fault saw renewed activity in May 2009, when pre-seismic creeping along the southern segment preceded an MW 4.0 earthquake in the northern segment, followed by some twenty-five aftershocks. Later, in March–April 2016, creep events reactivated the southern section of the same fault. Both the seismic and aseismic phenomena were recorded by the seismic and GNSS networks of INGV-Osservatorio Etneo, and produced surface faulting that left a footprint in the pattern of ground deformation detected by the InSAR measurements. We demonstrate that the integration of multidisciplinary data collected for volcano surveillance may shed light on different aspects of fault dynamics, and allow understanding how coseismic slip and creep alternate in space and time along the strike. Moreover, we use findings from our independent datasets to propose a conceptual model of the San Leonardello fault, taking into account behaviour and previous constraints from fault-based seismic hazard analyses. Although the faulting mechanisms described here occur at a very small scale compared with those of a purely tectonic setting, this case-study may represent a perfect natural lab for improving knowledge of seismogenic processes, also in other fault zones characterised by stick slip vs. stable-sliding fault behaviour

    Accurate hypocentre locations in the Middle-Durance Fault Zone, South-Eastern France

    Get PDF
    A one-dimensional velocity model and station corrections for the Middle-Durance fault zone (south-eastern France) was computed by inverting P-wave arrival times recorded on a local seismic network of 8 stations. A total of 93 local events with a minimum number of 6 P-phases, RMS<0.4 s and a maximum gap of 220° were selected. Comparison with previous earthquake locations shows an improvement for the relocated earthquakes. Tests were carried out to verify the robustness of inversion results in order to corroborate the conclusions drawn from our findings. The obtained minimum 1-D velocity model can be used to improve routine earthquake locations and represents a further step toward more detailed seismotectonic studies in this area of south-eastern France

    Shear wave splitting time variation by stress-induced magma uprising at Mount Etna volcano

    Get PDF
    Shear wave splitting exhibits clear time variations before the July 17th – August 9th, 2001 flanK eruption at Mount Etna. The normalized time delays, Tn, detected through an orthogonal transformation of singular value decomposition, exhibit a clearincrease starting 20 days before the occurrence of the eruption (July 17th); the qS1 polarization direction, obtained using a 3D covariance matrix decomposition, shows a 90°-flip several times during the analyzed period: the last flip 5 days before the occurrence of the eruption. Both splitting parameters also exhibit a relaxation phase shortly before the starting of the eruption. Our observations seem in agreement with Anisotropic Poro Elasticity (APE) modelling, suggesting a tool for the temporal monitoring of the build up of the stress leading to the occurrence of the 2001 eruption at Mt. Etna

    Genotoxicity of radiofrequency electromagnetic fields: Protocol for a systematic review of in vitro studies.

    Get PDF
    Abstract Background Exposure to radiofrequency electromagnetic fields (RF-EMF, 100 kHz – 300 GHz) emitted by wireless communication technologies is pervasive and ubiquitous. Concern has been raised about possible adverse effects to human health. In 2011 the International Agency for Research on Cancer has classified RF-EMF as possibly carcinogenic to humans, highlighting that the evidence is weak and far from conclusive. Updated systematic reviews of the scientific literature on this topic are lacking, especially for mechanistic studies. Objectives To develop a protocol for a systematic review of experimental studies investigating genotoxic effects induced by RF-EMF in in vitro cellular models. Genotoxicity is one of the key-biological indicators of carcinogenicity, and the most common characteristics of established carcinogens. The predefined procedures for conducting the systematic review are outlined below. Methods We will follow the guidelines developed by the National Toxicology Program-Office of Health Assessment and Translation (NTP-OHAT), adapted to the evaluation of in vitro studies. Eligibility criteria We will include experimental in vitro studies addressing the relationship between controlled exposures to RF-EMF and genotoxicity in mammalian cells only. Eligibility for inclusion will be further restricted to peer reviewed articles reporting findings from primary studies. Information sources We will search the scientific literature databases NCBI PubMed, Web of Science, and EMF-Portal. No filter on publication date will be applied. Only studies published in English will be considered. The reference lists of the included papers and available reviews will be screened for unidentified relevant papers. References will be managed through Endnote X9 software. Data extraction and synthesis of results Data from included papers will be extracted according to predefined forms. Heterogeneity within the available evidence will determine the type of evidence synthesis that is appropriate. Findings will be summarized in tables, graphical displays and in a narrative synthesis of the available evidences. A meta-analysis will be carried out if subgroups of studies homogeneous in terms of exposure characteristics, endpoint, and cell types will be identified. Risk of bias The internal validity of included studies will be assessed using the NTP-OHAT Risk of Bias Rating Tool for animal studies, adapted to in vitro studies. This stage of the process will be managed through the Health Assessment Workspace Collaborative (HAWC). Evidence appraisal To rate confidence in the body of evidence, we will use the OHAT GRADE-based approach for animal studies. Framework and funding This protocol concerns one of the evidence streams considered in a larger systematic review of the scientific literature on the potential carcinogenicity of RF-EMF, performed by scientists from several Italian public research agencies. The project is supported by the Italian Workers' Compensation Authority (INAIL) in the framework of the CRA with the Istituto Superiore di Sanita "BRiC 2018/06 – Scientific evidence on the carcinogenicity of radiofrequency electromagnetic fields"
    • …
    corecore