66 research outputs found

    Laboratory selection of trypanosomatid pathogens for drug resistance

    Get PDF
    The selection of parasites for drug resistance in the laboratory is an approach frequently used to investigate the mode of drug action, estimate the risk of emergence of drug resistance, or develop molecular markers for drug resistance. Here, we focused on the How rather than the Why of laboratory selection, discussing different experimental set-ups based on research examples with Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. The trypanosomatids are particularly well-suited to illustrate different strategies of selecting for drug resistance, since it was with African trypanosomes that Paul Ehrlich performed such an experiment for the first time, more than a century ago. While breakthroughs in reverse genetics and genome editing have greatly facilitated the identification and validation of candidate resistance mutations in the trypanosomatids, the forward selection of drug-resistant mutants still relies on standard in vivo models and in vitro culture systems. Critical questions are: is selection for drug resistance performed in vivo or in vitro? With the mammalian or with the insect stages of the parasites? Under steady pressure or by sudden shock? Is a mutagen used? While there is no bona fide best approach, we think that a methodical consideration of these questions provides a helpful framework for selection of parasites for drug resistance in the laboratory

    Caloric restriction induces energy-sparing alterations in skeletal muscle contraction, fiber composition and local thyroid hormone metabolism that persist during catch-up fat upon refeeding.

    Get PDF
    Weight regain after caloric restriction results in accelerated fat storage in adipose tissue. This catch-up fat phenomenon is postulated to result partly from suppressed skeletal muscle thermogenesis, but the underlying mechanisms are elusive. We investigated whether the reduced rate of skeletal muscle contraction-relaxation cycle that occurs after caloric restriction persists during weight recovery and could contribute to catch-up fat. Using a rat model of semistarvation-refeeding, in which fat recovery is driven by suppressed thermogenesis, we show that contraction and relaxation of leg muscles are slower after both semistarvation and refeeding. These effects are associated with (i) higher expression of muscle deiodinase type 3 (DIO3), which inactivates tri-iodothyronine (T3), and lower expression of T3-activating enzyme, deiodinase type 2 (DIO2), (ii) slower net formation of T3 from its T4 precursor in muscles, and (iii) accumulation of slow fibers at the expense of fast fibers. These semistarvation-induced changes persisted during recovery and correlated with impaired expression of transcription factors involved in slow-twitch muscle development. We conclude that diminished muscle thermogenesis following caloric restriction results from reduced muscle T3 levels, alteration in muscle-specific transcription factors, and fast-to-slow fiber shift causing slower contractility. These energy-sparing effects persist during weight recovery and contribute to catch-up fat

    TTAS a new stilbene derivative that induces apoptosis in Leishmania infantum.

    Get PDF
    Leishmania parasites are able to undergo apoptosis (programmed cell death), similarly to mammalian cells. Recently it was demonstrated in vitro the anti-leishmanial effect of some natural and synthetic stilbenoids including resveratrol and piceatannol. In this study we evaluated the Leishmanicidal activity of a pool of stilbene derivatives which had previously shown high apoptotic efficacy against neoplastic cells. All the compounds tested were capable to decrease the parasite viability in a dose-dependent manner. Trans-stilbenes proved to be markedly more effective than cis-isomers. This was different from that observed in tumor cells in which cis-stilbenes were more potent cytotoxic agents. Trans-3,4',5-trimethoxy-3'-amino-stilbene (TTAS) was the most active stilbene showing in Leishmania infantum a LD(50) value of 2.6 μg/mL. In contrast TTAS showed a low toxicity when tested on normal hemopoietic cells. This compound induced apoptosis in parasites by disrupting the mitochondrial membrane potential. Moreover it shows the ability to block Leishmania parasites in G(2)-M phase of cell cycle in agreement with the data obtained by affinity chromatography that identify tubulin as the putative target of TTAS. In conclusion, our results indicate that some stilbene derivatives are highly effective as anti-leishmanial agents and TTAS represents a pro-apoptotic agent in Leishmania parasites that merit further in vivo investigation

    Schmidt-hammer exposure ages from periglacial patterned ground (sorted circles) in Jotunheimen, Norway, and their interpretative problems

    Get PDF
    © 2016 Swedish Society for Anthropology and Geography Periglacial patterned ground (sorted circles and polygons) along an altitudinal profile at Juvflya in central Jotunheimen, southern Norway, is investigated using Schmidt-hammer exposure-age dating (SHD). The patterned ground surfaces exhibit R-value distributions with platycurtic modes, broad plateaus, narrow tails, and a negative skew. Sample sites located between 1500 and 1925 m a.s.l. indicate a distinct altitudinal gradient of increasing mean R-values towards higher altitudes interpreted as a chronological function. An established regional SHD calibration curve for Jotunheimen yielded mean boulder exposure ages in the range 6910 ± 510 to 8240 ± 495 years ago. These SHD ages are indicative of the timing of patterned ground formation, representing minimum ages for active boulder upfreezing and maximum ages for the stabilization of boulders in the encircling gutters. Despite uncertainties associated with the calibration curve and the age distribution of the boulders, the early-Holocene age of the patterned ground surfaces, the apparent cessation of major activity during the Holocene Thermal Maximum (HTM) and continuing lack of late-Holocene activity clarify existing understanding of the process dynamics and palaeoclimatic significance of large-scale sorted patterned ground as an indicator of a permafrost environment. The interpretation of SHD ages from patterned ground surfaces remains challenging, however, owing to their diachronous nature, the potential for a complex history of formation, and the influence of local, non-climatic factors

    Expression, purification and biochemical characterization of recombinant Ca-dependent protein kinase 2 of the malaria parasite Plasmodium falciparum.

    No full text
    Calcium-dependent protein kinases (CDPKs) are serine/threonine kinases that react in response to calcium which functions as a trigger for several mechanisms in plants and invertebrates, but not in mammals. Recent structural studies have defined the role of calcium in the activation of CDPKs and have elucidated the important structural changes caused by calcium in order to allow the kinase domain of CDPK to bind and phosphorylate the substrate. However, the role of autophosphorylation in CDPKs is still not fully understood. In Plasmodium falciparum, seven CDPKs have been identified by sequence comparison, and four of them have been characterized and assigned to play a role in parasite motility, gametogenesis and egress from red blood cells. Although PfCDPK2 was already discovered in 1997, little is known about this enzyme and its metabolic role. In this work, we have expressed and purified PfCDPK2 at high purity in its unphosphorylated form and characterized its biochemical properties. Moreover, propositions about putative substrates in P. falciparum are made based on the analysis of the phosphorylation sites on the artificial substrate myelin basic protein (MBP)
    corecore