62 research outputs found

    Optimizing dynamic investment decisions for railway systems protection

    Get PDF
    Past and recent events have shown that railway infrastructure systems are particularly vulnerable to natural catastrophes, unintentional accidents and terrorist attacks. Protection investments are instrumental in reducing economic losses and preserving public safety. A systematic approach to plan security investments is paramount to guarantee that limited protection resources are utilized in the most efficient manner. In this article, we present an optimization model to identify the railway assets which should be protected to minimize the impact of worst case disruptions on passenger flows. We consider a dynamic investment problem where protection resources become available over a planning horizon. The problem is formulated as a bilevel mixed-integer model and solved using two different decomposition approaches. Random instances of different sizes are generated to compare the solution algorithms. The model is then tested on the Kent railway network to demonstrate how the results can be used to support efficient protection decisions

    Application of Discrete-Event Simulation for Planning and Operations Issues in Mental Healthcare

    Get PDF
    Mental health disorders are on the rise around the world. Inadequate service provision and lack of access have led to wide gaps between the need for treatment and service delivery. Despite the popularity of Discrete-event Simulation (DES) in healthcare planning and operations, there is evidence of limited application of DES in planning for mental healthcare services. This paper identifies and reviews all the papers that utilize DES modelling to address planning and operations issues in mental healthcare services. The aim is to contribute a roadmap for the future application of DES in mental healthcare services, with an emphasis on planning and operations

    Passenger railway network protection: A model with variable post-disruption demand service

    Get PDF
    Protecting transportation infrastructures is critical to avoid loss of life and to guard against economic upheaval. This paper addresses the problem of identifying optimal protection plans for passenger rail transportation networks, given a limited budget. We propose a bi-level protection model which extends and refines the model previously introduced by Scaparra et al, (Railway infrastructure security, Springer, New York, 2015). In our extension, we still measure the impact of rail disruptions in terms of the amount of unserved passenger demand. However, our model captures the post-disruption user behaviour in a more accurate way by assuming that passenger demand for rail services after disruptions varies with the extent of the travel delays. To solve this complex bi-level model, we develop a simulated annealing algorithm. The efficiency of the heuristic is tested on a set of randomly generated instances and compared with the one of a more standard exact decomposition algorithm. To illustrate how the modelling approach might be used in practice to inform protection planning decisions, we present a case study based on the London Underground. The case study also highlights the importance of capturing flow demand adjustments in response to increased travel time in a mathematical model

    Assessing road network vulnerability: a User Equilibrium interdiction model

    Get PDF
    Road networks are vulnerable to natural and man-made disruptions. The loss of one or many critical links of the network often leads to increased traffic congestion. Therefore, quantitative models are necessary to identify these critical assets so that actions can be taken by decision makers to mitigate the impact of disruptions. This paper proposes an optimisation model to identify the set of arcs that, when lost, results in the worst congestion under user equilibrium traffic. The model is formulated as a bi-level non-linear problem. The challenging formulation is solved via a customised version of Greedy Randomised Adaptive Search Procedure (GRASP) meta-heuristic. Computational experiments are run on a dataset of artificial grids and managerial insights are provided based on popular Sioux and Berlin network case-studies

    Improving supply system reliability against random disruptions: Strategic protection investment

    Get PDF
    Supply chains, as vital systems to the well-being of countries and economies, require systematic approaches to reduce their vulnerability. In this paper, we proposea non linear optimisation model to determine an effective distribution of protectiveresources among facilities in service and supply systems so as to reduce the probability of failure to which facilities are exposed in case of external disruptions. Thefailure probability of protected assets depends on the level of protection investmentsand the ultimate goal is to minimize the expected facility-customer transport ortravel costs to provide goods and services. A linear version of the model is obtainedby exploiting a specialized network flow structure. Furthermore, an efficient GRASPsolution algorithm is developed to benchmark the linearised model and resolve numerical difficulties. The applicability of the proposed model is demonstrated usingthe Toronto hospital network. Protection measures within this context correspondto capacity expansion investments and reduce the likelihood that hospitals are unable to satisfy patient demand during periods of high hospitalization (e.g., during apandemic). Managerial insights on the protection resource distribution are discussedand a comparison between probabilistic and worst-case disruptions is provided

    Passenger railway network protection: A model with variable post-disruption demand service

    Get PDF
    Protecting transportation infrastructures is critical to avoid loss of life and to guard against economic upheaval. This paper addresses the problem of identifying optimal protection plans for passenger rail transportation networks, given a limited budget. We propose a bi-level protection model which extends and refines the model previously introduced by Scaparra et al, (Railway infrastructure security, Springer, New York, 2015). In our extension, we still measure the impact of rail disruptions in terms of the amount of unserved passenger demand. However, our model captures the post-disruption user behaviour in a more accurate way by assuming that passenger demand for rail services after disruptions varies with the extent of the travel delays. To solve this complex bi-level model, we develop a simulated annealing algorithm. The efficiency of the heuristic is tested on a set of randomly generated instances and compared with the one of a more standard exact decomposition algorithm. To illustrate how the modelling approach might be used in practice to inform protection planning decisions, we present a case study based on the London Underground. The case study also highlights the importance of capturing flow demand adjustments in response to increased travel time in a mathematical model

    A Synthesis of Optimization Approaches for Tackling Critical Information Infrastructure Survivability

    Get PDF
    Over the years, Critical Infrastructures (CI) have revealed themselves to be extremely disaster-prone, be the disasters nature-based or man-made. This paper focuses on a specific category of CI: Critical Information Infrastructures (CII), which are commonly deemed to include communication and information net-works. The majority of all the other CI (e.g. electricity, fuel and water supply, transport systems, etc.) are crucially dependent on CII. Therefore, problems associated with CII that disrupt the services they are able to provide (whether to a single end-user or to another CI) are of increasing interest. This paper discusses some recent developments in optimization models regarding CII’s ability to with-stand disruptive events within three main spheres: network survivability assessment, network resource allocation strategy and survivable design

    Assessing Protection Strategies for Urban Rail Transit Systems: A Case-Study on the Central London Underground

    Get PDF
    Urban rail transit systems are highly prone to disruptions of various nature (e.g., accidental, environmental, man-made). Railway networks are deemed as critical infrastructures given that a service interruption can prompt adverse consequences on entire communities and lead to potential far-reaching effects. Hence, the identification of optimal strategies to mitigate the negative impact of disruptive events is paramount to increase railway systems’ resilience. In this paper, we investigate several protection strategies deriving from the application of either single asset vulnerability metrics or systemic optimization models. The contribution of this paper is threefold. Firstly, a single asset metric combining connectivity, path length and flow is defined, namely the Weighted Node Importance Evaluation Index (WI). Secondly, a novel bi-level multi-criteria optimisation model, called the Railway Fortification Problem (RFP), is introduced. RFP identifies protection strategies based on stations connectivity, path length, or travel demand, considered as either individual or combined objectives. Finally, two different protection strategy approaches are applied to a Central London Underground case study: a sequential approach based on single-asset metrics and an integrated approach based on RFP. Results indicate that the integrated approach outperforms the sequential approach and identifies more robust protection plans with respect to different vulnerability criteria. View Full-Tex

    Masterplanning at the Port of Dover: The Use of Discrete-Event Simulation in Managing Road Traffic

    Get PDF
    The Port of Dover is Europe’s busiest ferry port, handling £119 billion or 17% of the UK’s annual trade in goods. The Port is constrained geographically to a small area and faces multiple challenges, both short- and long-term, with managing the flow of five million vehicles per year to/from mainland Europe. This article describes some of the work that the Port is doing to minimize the impact of port road traffic on the local community and environment using discrete-event simulation modeling. Modeling is particularly valuable in identifying where future bottlenecks are likely to form within the Port due to projected growth in freight traffic and comparing the effectiveness of different interventions to cope with growth. One of our key findings is that space which can be used flexibly is far more valuable than dedicated space. This is supported by the much greater reduction in traffic congestion that is expected to be achieved given a 10% increase in freight traffic by reallocating space at the front of the system to temporarily hold vehicles waiting to pass through border control and check-in compared to extending the amount of space for ferry embarkation at the rear of the system. The importance of flexible space has implications for port design that can be applied more broadly. Modeling is also useful in identifying critical thresholds for vehicle processing times that would cause the system to become overwhelmed. Increasing the check-in time by just three to five minutes, for example, would completely exceed the Port’s capacity and produce indefinite queueing. This finding has important implications for Brexit planning. From a wider context, the research presented here nicely illustrates how simulation can be used to instill more evidence-based thinking into port masterplanning and support “green port” and other corporate sustainability initiatives

    Mind the gap: a review of optimisation in mental healthcare service delivery

    Get PDF
    Well-planned care arrangements with effective distribution of available resources have the potential to address inefficiencies in mental health services. We begin by exploring the complexities associated with mental health and describe how these influence service delivery. We then conduct a scoping literature review of studies employing optimisation techniques that address service delivery issues in mental healthcare. Studies are classified based on criteria such as the type of planning decision addressed, the purpose of the study and care setting. We analyse the modelling methodologies used, objectives, constraints and model solutions. We find that the application of optimisation to mental healthcare is in its early stages compared to the rest of healthcare. Commonalities between mental healthcare service provision and other services are discussed, and the future research agenda is outlined. We find that the existing application of optimisation in specific healthcare settings can be transferred to mental healthcare. Also highlighted are opportunities for addressing specific issues faced by mental healthcare services
    • …
    corecore