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ABSTRACT
Supply chains, as vital systems to the well-being of countries and economies, re-
quire systematic approaches to reduce their vulnerability. In this paper, we propose
a non linear optimisation model to determine an effective distribution of protective
resources among facilities in service and supply systems so as to reduce the proba-
bility of failure to which facilities are exposed in case of external disruptions. The
failure probability of protected assets depends on the level of protection investments
and the ultimate goal is to minimize the expected facility-customer transport or
travel costs to provide goods and services. A linear version of the model is obtained
by exploiting a specialized network flow structure. Furthermore, an efficient GRASP
solution algorithm is developed to benchmark the linearised model and resolve nu-
merical difficulties. The applicability of the proposed model is demonstrated using
the Toronto hospital network. Protection measures within this context correspond
to capacity expansion investments and reduce the likelihood that hospitals are un-
able to satisfy patient demand during periods of high hospitalization (e.g., during a
pandemic). Managerial insights on the protection resource distribution are discussed
and a comparison between probabilistic and worst-case disruptions is provided.

KEYWORDS
Disruption management; resource allocation; fortification; healthcare; Covid-19

1. Introduction

In the wake of the 21st century’s terrorist attacks and numerous natural disasters, the
need of protecting supply chains and critical infrastructure systems has been widely
recognized in the scientific community, among practitioners and government agencies
alike. Risks to critical lifeline networks result from a complex mix of naturally oc-
curring and human threats, including earthquakes, hurricanes, flooding, terrorist at-
tacks, and political unrest. More recently, the ongoing Covid-19 pandemic is disrupting
healthcare systems worldwide. Shortages of intensive care units (ICUs) and medical
equipment are taking a severe toll, dramatically highlighting the necessity of putting
in place mitigation strategies to address disruptive scenarios. Other less catastrophic
contingencies, such as component and technological failures or temporary shortages of
capacity, may still have enduring severe effects on a supply chain operation continuity.
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With so many possible threats and in view of the intrinsic fragility of today complex
supply-chains, proactive measures must be taken to lessen the risks and minimize the
impact that disruptions to the provision of essential services (such as energy, food,
water, transport, communications, health and banking) may cause on businesses and
communities. Vulnerability reduction can be attained by protecting key critical compo-
nents and assets. Protecting and ensuring the resiliency of critical infrastructures has
become an imperative mandate in the agenda of governments and organizations and,
in the last decade, government and private sector expenditures devoted to security
and protection efforts have increased significantly (European Commission, 2019).

Different protection strategies can be implemented to increase systems resiliency.
These depend on the nature of the hazard they address and the type of infrastructure
under consideration. As an example, site fortification, monitoring devices, intelligence
and surveillance may be used to protect nuclear and chemical facilities from terrorist
attacks. In a broader sense, protection measures include capacity expansion or re-
location of critical facilities. For example, Phua et al. (2020) recommend increasing
capacity of health infrastructure, supply and staff as the key to deal with the Covid-19
pandemic. Several examples can be found of countries increasing ICU beds by ratio-
nalising hospital resources and spaces (BBC, 2020b) as well as building brand new
temporary and permanent facilities (BBC, 2020a). Finally, supplier decentralization
and diversification strategies can be used to protect supply-chains. This also fits the
Covid-19 discourse, with companies experiencing sourcing issues and being required
to proactively find alternatives to mitigate economic disruptions (Avetta, 2020).

This article focuses on the protection of service or supply facilities in median sys-
tems, where service is provided to customers by their closest facility and efficiency is
measured in terms of expected travel costs or distances. This kind of efficiency mea-
sure has been largely used in application settings where maximizing consumer access
to supply centers is the primary objective, as in the case of facilities providing essential
services or goods (e.g., fire stations, hospitals, test centers, vaccines). Throughout the
remainder of paper, the terms protection and fortification are used interchangeably.
We assume that each facility can fail independently with a given probability and that
customers have prior information on the operational status of the facilities. Given a
budget constraint, the objective is to allocate protective resources so as to minimize
the expected demand-weighted transportation costs (or travel times or distances). Our
modeling approach can handle site-specific failure probabilities, the case where forti-
fication only reduces, but does not eliminate, the probability of failure, and the case
where the failure probability reduction depends on the level of protection investments.
The resulting formulation is non linear. A custom GRASP algorithm is introduced
to solve the model. The heuristic is also used to highlight numerical difficulties and
fine tune an efficient linearisation approach which exploits a network flow structure to
replace the multiplicative terms in the objective function of the non-linear model.

This paper contributes to the disruption management body of research by: introduc-
ing the Probabilistic Median Fortification Problem (PMFP) as a non-linear, mixed-
integer model and providing a probability-chain linearisation; proposing a GRASP
procedure exploiting efficient data structures, which can be used to benchmark the
linearisation and redress numerical issues typical of probability-chain based formula-
tions; demonstrating how the model can be applied in practice to a hospital network so
as to inform decisions about hospital capacity expansion during periods of high hospi-
talization demand (e.g., during a pandemic); proposing a hybrid protection approach
which produces robust solutions against both probabilistic and worst-case disruptions.

The reminder of this paper is organized as follows. A comprehensive review of
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related research on supply chain disruption management is provided in Section 2. In
Section 3, the problem is formally introduced and formulated as a non-linear model.
A linear formulation is then presented in Section 4. The GRASP heuristic is described
in Section 5. Some computational experiments are presented in Section 6, whereas the
application of PMFP to a real case study is discussed in Section 7. Some conclusive
remarks are provided in Section 8.

2. Background and related work

There is a vast body of OR publications studying problems related to supply systems
and their design. Since the seminal works by Hakimi (1964) and Hakimi (1965), the
p-median problem has been widely used to study the design of demand-weighted sup-
ply networks. It has been customised and applied to a wide range of contexts, for
example healthcare (Daskin and Dean, 2005), waste management (Dantrakul et al.,
2014) and air transport (Sasaki et al., 1999). Moreover, given its combinatorial nature,
extensive efforts in devising efficient solution algorithms have been made (Mladenović
et al., 2007). The reader is referred to Melo et al. (2009) and Puerto et al. (2018) for
comprehensive reviews on the topic. Given the focus of this work, the following review
is restricted to papers that consider disruption of service and supply systems. This
body of research has increased substantially since the beginning of the millennium to
denote a growing involvement of the OR community in tackling emergency logistics
challenges. Emergency management efforts can be broadly casted as pre-event and
post-event actions (Tufekci and Wallace, 1998). Pre-event actions include mitigation
and preparedness operations which are implemented before a disaster occurs. Post-
event actions incorporate response and recovery operations which take place in the
aftermath of a disaster (e.g., relief distribution, evacuation and casualty transporta-
tion). Overall the four programmatic phases (mitigation, preparedness, response, and
recovery) constitute the disaster operations management lifecycle (Altay and Green
III, 2006). Examples of decision tools to support humanitarian logistics considering
different disruption stages can be found in Çelik et al. (2012). As facility protection
pertains to the mitigation stage, we only briefly discuss papers which focus on miti-
gation measures. An overview of the academic OR literature on post-event operations
can be found in recent surveys (Çelik, 2016; Esposito Amideo et al., 2019).

2.1. Designing Reliable Supply Systems

The impact of catastrophic events and random failures can be mitigated by designing
supply chains and infrastructure networks which are inherently reliable to external dis-
ruptions. Increased reliability clearly comes with a cost. However, ad-hoc optimization
models can be devised to identify system configurations which are both cost-efficient
and reliable (Snyder and Daskin, 2005). Building upon the seminal papers by Daskin
(1983) and Drezner (1987), who consider the location of unreliable facilities in coverage
and median systems respectively, a number of reliability location models have appeared
in the literature in recent years (Alcaraz et al., 2012; Berman and Krass, 2011; Berman
et al., 2007, 2009; Cui et al., 2010; Lei and Tong, 2013; Li and Ouyang, 2010; O’Hanley
et al., 2013; Ozkan et al., 2020; Shen et al., 2011). All these models aim at identifying
the optimal location of facilities which can fail with some probability so as to mini-
mize the expected costs in normal and failure scenarios. Lim et al. (2010), Li et al.
(2013) and Li and Savachkin (2013) consider the problem of locating both reliable and
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unreliable facilities. Peng et al. (2011) extend previous location reliability models by
using a p-robustness measure to design reliable multi-echelon supply chain networks.
Jabbarzadeh et al. (2018) incorporate sustainability issues into a classic reliable de-
sign problem. In a slightly different context, O’Hanley and Church (2011) consider the
design of robust coverage-type service networks to hedge against worst-case facility
losses. Aksen and Aras (2012) propose bilevel fixed charge facility location problems
to counter antagonist attacks. Yun et al. (2015) propose a modeling framework for reli-
able supply chain network design when customers are unaware of the disruption status
of a facility. Zarrinpoor et al. (2017) study a location problem to design a robust hier-
archical network for health service. Yu et al. (2017) propose a risk-adverse approach
to the problem by incorporating conditional value-at-risk measures in the design pro-
cess. Aslan and Çelik (2019) propose a model to design a three-echelons humanitarian
response network and its pre-disaster inventory under probabilistic disruptions, while
accounting for road restoration and relief transportation as well.

2.2. Protecting Supply Systems from Worst-Case Disruptions

Although the impact of facility disruptions can be mitigated in the initial design, re-
designing an entire system may be infeasible or prohibitively expensive. Additionally,
relocating facilities may lead to more robust supply chains in terms of efficiency and
transportation costs but may not eliminate other risks due to external disruptions,
such as loss of human lives, property damage and environmental damage. As an al-
ternative, the reliability of existing infrastructure can be enhanced through efficient
investments in protection measures. Different modeling frameworks have been adopted
in the literature to model protection resource allocation to counter both strategic and
probabilistic risks (Golany et al., 2009). The majority of protection models consider
strategic risks (i.e., intentional attacks) and are formulated as bilevel programming
models where the upper level problem of optimally distributing protection resources
embeds a lower-level optimization problem which endogenously generates worst-case
scenario losses (Brown et al., 2006). Examples of these defender-attacker models can be
found in Qiao et al. (2007) for water supply systems, Holmgren et al. (2007) for electric
power grids, Cappanera and Scaparra (2011), Starita and Scaparra (2016), Starita and
Scaparra (2017) for transportation networks. Several different works consider facility
protection investments against worst-case losses in median supply systems (Church
and Scaparra, 2007; Liberatore et al., 2012, 2011; Losada et al., 2012b; Scaparra and
Church, 2012). These models have introduced increasingly complex issues such as fa-
cility capacities, uncertainty in the number of losses, correlation of disruptive events,
disaster propagation effects, recovery times, disruption frequency and investment lev-
els. Details of defender-attacker models for other systems, such as hub networks (Ra-
mamoorthy et al., 2018) and decentralised systems (Zhang et al., 2017), can be found
in Scaparra and Church (2019).

2.3. Protecting Supply Systems from Probabilistic Disruptions

In the last decade, researchers started focusing on protection models for systems fac-
ing probabilistic disruptions. The early OR papers discussing protection models in a
probabilistic environment consider investment decisions to strengthen infrastructure
links in transportation networks. As an example, Liu et al. (2009) proposes a two-
stage stochastic programming problem to minimize the total expected physical and
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social losses caused by potential disruptions. Fan and Liu (2010) analyse the problem
of allocating limited retrofit resources to highway bridges so as to reduce structural
losses and travel delays. Both these models assume that the probability of damage of
protected components is reduced to zero, to avoid the computational difficulties asso-
ciated with modeling non-zero reduction in the failure likelihood. Peeta et al. (2010)
consider the problem where the survival probabilities of the protected components
depend on the level of investment. The model aims at maximizing the post-disaster
connectivity and minimizing traversal costs between origin and destination nodes in
highway networks. Sawik (2013) introduce a model where binary fortification of sup-
pliers and emergency inventory are used to mitigate the impact of disruption scenarios.
Qin et al. (2013) introduce a two-stage stochastic fortification model where the plan-
ner trades off between fortifying facilities and placing emergency inventory resources.
Zhang et al. (2014) propose a protection model for p-median systems which accounts
for worst-case and random attacks. They assume that protected facilities are immune
to disruptions. Medal et al. (2016) relax binary assumptions by assuming that different
levels of investments can be made to decrease the disruption likelihood of facilities.
Their model relies on pre-defining a set of disruptive scenarios and aims at maximising
the expected utility gained from successful shipments to costumers.

2.4. Combining Design with Protection

A recent line of research has also investigated the combination of protection and design
models. For example, Li et al. (2013) consider facilities facing probabilistic disruptions
and model decisions on locations, main and back-up assignments and binary fortifica-
tions. This work is further extended in Li and Savachkin (2016) by considering contin-
uous fortification investments. Each open facility has a failure probability that can be
reduced through investments. However, no simultaneous disruptions are considered.
Jabbarzadeh et al. (2016) propose a robust formulation for the capatted fixed-charge
location problem where the disruption probability of unreliable facilities decreases
with the level of protection investments. Unlike our model, the authors assume the
existence of completely reliable facilities which serve the customers when an unreli-
able facility fails. Rohaninejad et al. (2018) introduce a scenario-based formulation to
design multi-echelon supply chains with facility hardening options.

Overall, the current literature on supply chain protection has mostly focused on
worst-case disruptions and network design problems. Stochastic disruptions have
mainly been investigated for the fixed-charge location problem, assuming either indi-
vidual disruptions or requiring to pre-define a set of disruption scenarios. This paper
aims to widen the body of research on probabilistic disruptions on pre-existing supply
chains. A novel formulation is introduced, modelling simultaneous disruptions and in-
corporating investment level decisions aimed at reducing the probability of failure of
facilities in p-median systems. Unlike assumptions made in previous models, this for-
mulation does not rely on pre-defining a set of disruptive scenarios and computes the
expected transportation costs considering the probabilities of failure of all facilities,
without assuming the presence of reliable facilities which never fail.
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3. The p-Median Fortification Problem (PMFP)

The p-median fortification problem assumes the existence of a supply system with
p operating facilities, hence no location decisions are considered. Each facility has
unlimited capacity and the system users receive service from their nearest facility. Let
J , indexed by j, be the set of p existing facilities, and I, indexed by i, the set of
N customers. Each customer i ∈ I has a demand of hi units and each unit shipped
to customer i from facility j incurs a transportation cost of dij . We assume that
transportation costs are directly related to distances or travel times. Therefore, in the
following, we will refer to dij as cost, distance or travel time interchangeably. Also, we
denote by ik the kth closest facility to customer i (ties can be broken arbitrarily for
equidistant facilities).

Each facility j may fail or be disrupted with a fixed probability qj . Failures are
assumed to be independent. A disrupted facility becomes inoperable, so that the cus-
tomers served by it must be reassigned to their closest (cheapest) non-disrupted fa-
cility. We assume that each customer i accepts service only from facilities within an
admissible area Ki. For example, Ki can be defined as the set of the K closest facilities
to customer i, with |K| ≤ p, or as the set of facilities within a predefined radius ρi,
i.e. Ki = {j ∈ J |dij ≤ ρi}. If all the facilities in Ki fail, the demand of customer i
is lost and the system incurs a penalty, or lost-sale cost, θi per unit of demand. In
some application settings, customers may be willing to receive service by any facility,
independently from the cost involved. This can be easily captured in the model by
setting K = p if the admissible area is defined in terms of number of closest facilities,
or by setting ρi as large as the cost of serving any customer from any location in
the network, if the admissible area is defined by a maximum radius. If customers can
receive service by any facility, the penalty is incurred only when all the facilities fail.

A limited amount of protection resources, also referred to as protection budget, b,
is available for protecting (or hardening or fortifying) some of the facilities. Different
amounts of protective resources can be invested on a single facility. The failure prob-
ability after protection depends on the level of protection investments. Let λ be the
number of possible investment levels and cjl be the cost for protecting facility j at
level l, with cjl > cjl−1 for each j ∈ J and each l = 0, ..., λ. A security investment
at level l reduces j’s failure probability from qj to qjl, with qjl < qjl−1. We assume
qj0 = qj and cj0 = 0, i.e., a protection at level zero is equivalent to no protection. In
the following, we denote by q̄j = 1 − qj the probability that facility j is operational
if not protected, and by q̄jl = 1 − qjl the probability that facility j is operational if
protected at level l.

The objective of the PMFP is to identify the protection investment strategy that
minimizes the expected transportation costs. Protection decisions are modeled through
the following set of decision variables:

zjl =

{
1, if facility j is protected at level l

0, otherwise

The expected cost for one unit of demand of customer i can be computed as a function
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of the vector of protection variables z as follows:

di(z) =

|Ki|∑
m=1

[
m−1∏
k=1

L∑
l=0

qiklzikl

][
L∑
l=0

q̄imlziml

]
diim (1)

+

|Ki|∏
k=1

L∑
l=0

qiklzikl

 θi
The first term in the right-hand side of expression (1) represents the expected cost
for serving customer i by the facilities in the service area Ki. Specifically, customer
i is served by its mth closest facility at a cost diim only if all the closest facilities ik,

with k < m, are not operational, which occurs with probability
∏m−1
k=1

∑L
l=0 qiklzikl,

but facility im is operational, which occurs with probability
∑L

l=0 q̄imlziml. The second
term in the right-hand side of the expression represents the expected penalty which
is incurred when all the facilities in the set Ki fails. The probability of this event is∏|Ki|
k=1

∑L
l=0 qiklzikl.

The PMFP can then be stated as the following combinatorial optimization problem:

min D =
∑
i∈I

hidi(z) (2)

s.t.
∑
j∈J

λ∑
l=0

cjlzjl ≤ b (3)

L∑
l=0

zjl = 1, ∀j ∈ J (4)

zjl ∈ {0, 1}, ∀j ∈ J, l = 0, ..., λ (5)

The objective function (2) minimizes the demand weighted sum of expected trans-
portation costs. Constraint (3) specifies that the total protection investments cannot
exceed the available budget. Constraints (4) state that only one level of protection can
be chosen for a facility. Finally, constraints (5) represent the integrality requirements
of the decision variables.

4. A linear formulation for PMFP

It is obvious that model (2)-(5) is not amenable to solution by general purpose opti-
mization solvers due to the complex, highly non-linear structure of its objective func-
tion. This section presents a linearization of PMFP, based on the use of a specialized
network flow structure to evaluate the compound probability terms in the expected
costs (1) of the objective function (2). This type of linearization technique was first
used by Morton et al. (2007) in the context of nuclear smuggling interdiction. Losada
et al. (2012a) used a similar network structure to solve a stochastic interdiction prob-
lem in median systems. O’Hanley et al. (2013) and Tran et al. (2016) proposed different
network representations, referred to as probability chain and probability lattice.

In our formulation, we use a specialized network flow structure which, for each
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customer i, computes the correct probability that i is allocated to each facility j while
taking into account that the probability of failure of each facility can be reduced by
different amounts, depending on the level of protection investment.

To reformulate PMFP in linear form, referred to as PMFP-L, we define the
following additional variables:

yijl : when facility j is protected at level l, this represents the probability that all
the facilities which are closer to customer i than j are not operational. If facility j is
protected at any other level, yijl is zero.

ui: this is the probability that all the facilities in the service region of customer i are
not operational.

The variables yijl are defined for each customer i, each facility j ∈ Ki, and each
protection level l. Note that when j = i1 (i.e., j is the closest facility to customer i),
the variable yii1l is one if i1 is protected at level l, zero otherwise.
PMFP-L is formulated as follows:

min
∑
i∈I

hi

|Ki|∑
k=1

diik

λ∑
l=0

q̄iklyiikl + θiui

 (6)

s.t.

L∑
l=0

yiikl = 1 ∀i ∈ I, k = 1 (7)

L∑
l=0

qiklyiikl =

L∑
l=0

yiik+1l ∀i ∈ I, k = 1, . . . , |Ki| − 1 (8)

L∑
l=0

qiklyiikl = ui ∀i ∈ I, k = |Ki| (9)

yijl ≤ zjl ∀i ∈ I, k = 1, ..., |Ki|, l = 0, ..., λ (10)

(3)− (5)

yijl ∈ [0, 1] ∀i ∈ I, k = 1, ..., |Ki|, l = 0, ..., λ (11)

ui ∈ [0, 1] ∀i ∈ I (12)

The objective function (6) minimizes the expected transportation cost defined in terms
of the probability variables yijl and ui. Constraints (7)-(9) enforce these variables
to take the correct probability value. These can be seen as flow balance constraints
which propagate the failure probabilities from facility ik to facility ik+1 according to
the protections that are made. Constraints (10) force the variables yijl to be zero if
facility j is not protected at level l. Finally, constraints (11)-(12) force the probability
variables to be continuous variables in the interval [0, 1].

If customers can receive service from any facility in the system, this model has pλ
integer variables, pλn+n continuous variables and pλn+np+n+p+ 1 constraints. It
is noteworthy that this linear construct requires the same number of integer variables
as the non-linear formulation, i.e., all the linearization variables are continuous.
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5. A GRASP procedure for PMFP

GRASP is an iterative, two-phase metaheuristic originally developed by Feo and Re-
sende (1995). The first phase consists of a randomized greedy construction algorithm
which produces a feasible solution to the problem. In the second phase, a local search
is applied to the random greedy solution to obtain a local optimum in its neighbor-
hood (Festa and Resende, 2011). As pointed out in Mannino et al. (2007), there are
two tasks which affect the performance of a GRASP algorithm: the evaluation of the
greedy function and the optimization over the neighborhood. In the following, we
describe how the computational complexity of these tasks can be reduced by using
appropriate data structures.

5.1. Construction phase

The greedy randomized phase for PMFP builds a solution starting from the trivial
solution zj0 = 1, ∀j ∈ J (i.e., all the facilities are unprotected). At each iteration, an
unprotected facility j is protected at some level l. The pair (j, l) is selected at random
from a restricted candidate list (RCL). The construction of the RCL is guided by an
adaptive greedy function which computes the unit reduction in the objective function
(2) obtained by protecting an unprotected facility j at some level l. Namely, let z be
the partial solution at the current iteration. For each unprotected facility j and for
each protection level l = 1, ..., λ, the greedy function is given by:

bjl =
∆jl

cjl
=

∑
i∈I hi(di(z)− di(z′))

cjl
(13)

where z′ = z except for the component zjl (i.e., zjl = 0 and z′jl = 1). Note that the
evaluation of the greedy function requires computing the new expected transportation
cost di(z

′) for each customer i according to equation (1). Therefore, the evaluation of
(13) requires O(np2λ) time.

A pair (j, l) is considered and its greedy function bjl evaluated only if the cost of
protecting facility j at level l, cjl, does not exceed the protection budget still available
at that iteration. A pair (j, l) is inserted in the RCL if its greedy function value
is in the range [bmax − α(bmax − bmin), bmax], where bmax and bmin are the greedy
function values of the best and the worst insertion at that construction iteration.
The restricted candidate parameter α varies between 0 and 1. Values of α close to 0
increase the greediness of the approach, whereas values close to 1 increase the amount
of randomness. In our computational experiments we used a self-calibrating mechanism
for automating the choice of α known as Reactive Grasp (Prais and Ribeiro, 2000) and
implemented as in Scaparra and Church (2005). The construction phase terminates
when the residual protection budget is insufficient to protect any unprotected facility
or all facilities have already been protected at some level l 6= 0.

5.2. Local search phase

In the local search phase, we simply explore a swap neighborhood. Namely, the neigh-
bors of the current solution are all the solutions that can be obtained by removing the
protection of a protected facility and protecting un unprotected facility at some level
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l 6= 0. The neighborhood only includes feasible solutions with respect to the budget
constraint. As the evaluation of each move profitability is computationally expensive,
we use a first improvement strategy during the search. Further details on the actual
implementation of swap moves are provided in the next section.

5.3. Efficient evaluation of move profitability

To reduce the time for evaluating every possible insertion in the RCL at each step of
the constructive phase and every swap in the local optimization phase, we maintain an
expected distance matrix W = [wik], where each entry stores the expected transporta-
tion cost for customer i when only its first k closest facilities are considered. For each
customer i and each k = 1, ..., |Ki|, the corresponding entry in the matrix is initialized
as follows:

wik =

k∑
m=1

m−1∏
n=1

qin q̄imdiim (14)

Additionally, when k = |Ki|+ 1, the matrix entry for customer i is:

wik =

|Ki|∑
m=1

m−1∏
n=1

qin q̄imdiim +

|Ki|∏
k=1

qikθi. (15)

By using this matrix, the expected transportation cost for each customer i deriving
from adding or dropping the protection of a facility can be computed in constant time
as follows.

Let z be the current solution with zh0 = 1, and z′ the solution obtained from z by
protecting facility h at level l for some l ∈ {1, ..., λ}, i.e., z′ = z except for z′h0 = 0 and
z′hl = 1. Assume that facility h is the mth closest facility to customer i (i.e., h = im).
The expected transportation cost for customer i, di(z

′), after the protection of facility
h at level l is simply:

di(z
′) = wim−1 + (wim − wim−1)q̄hl/q̄h + (di(z)− wim)qhl/qh. (16)

Similarly, let z′ be the solution obtained from z by dropping the protection of facility
u at level t, with t ∈ {1, ..., λ}. Let u be the mth closest facility to customer i (i.e.,
u = im). The expected transportation cost for customer i, di(z

′), after the removal of
the protection of facility u at level t is:

di(z
′) = wim−1 + (wim − wim−1)q̄u/q̄ut + (di(z)− wim)qu/qut. (17)

For both add and drop moves, the overall objective function (2) of the new solution
z′ can be evaluated in O(N) time by summing the demand weighted di(z

′) over all the
customers, i.e.:

D(z′) =
∑
i∈I

hidi(z
′) (18)

When a move is actually performed, the matrix W must be updated. This can be
done as follows. Assume than an add move sets z′hl = 1 (l 6= 0) and h is the m-th
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closest facility to customer i. Then each new matrix entry, w′ik, is obtained from the
previous entry according to the formula:

w′ik =


wik, if k < m,

(wik − wik−1)q̄hl/q̄h + w′ik−1, if k = m,

(wik − wik−1)qhl/qh + w′ik−1, if k > m.

(19)

Similarly, each new matrix entry, w′ik, after a drop move which sets z′ut = 0 (t 6= 0),
where u is the m-th closest facility to customer i, is:

w′ik =


wik, if k < m,

(wik − wik−1)q̄u/q̄ut + w′ik−1, if k = m,

(wik − wik−1)qu/qut + w′ik−1, if k > m.

(20)

The update of the matrix W can hence be performed in O(NP ) time.
In the construction phase of the GRASP procedure, formulae (16) and (18) are used

to evaluate the greedy function for each unprotected facility h and level l. When a
pair (h, l) is then randomly selected from the RCL, formula (19) is used to update the
expected cost matrix W.

In the local search phase, each swap move is evaluated as the combination of a drop
and an add move. A scheme for the neighborhood optimization phase is given below.
Let z be the solution obtained at the end of the construction phase and rb the residual
protection budget. Lin and Lout are respectively the sets of protected and unprotected
facilities in the current solution.

Procedure LocalSearch(z)
0. Set z′ = z, Lin = {j ∈ J |zj0 = 0} and Lout = {j ∈ J |zj0 = 1};
1. While z not locally optimal do
2. Select u from Lin. Let t be the protection level such that zut = 1.

Set z′ut = 0, z′u0 = 1 and update matrix W according to (20) (drop move)
3. For each h in Lout do
4. Identify the largest protection level l such that rb+ cut − chl ≥ 0.
5. Set z′hl = 1, z′h0 = 0 and compute D(z′) by using formulae (16) and (18) (add move).
6. If D(z′) < D(z), (improving swap detected)
7. rb := rb− cut + chl, Lin := Lin \ {u} ∪ {h}, Lout := Lout \ {h} ∪ {u}

Set z = z′, update matrix W according to (19). Go to step 2.
8. Else z′hl = 0, z′h0 = 1 (restore previous solution and try next h)
9. End for
10. Set z′ut = 1, z′u0 = 0 and restore matrix W according to formula (19) with h = u and l = t.

Go to step 1. (No improving swap found for facility u. Undo drop and try next u).
11. End while
12. Return z

Note that in the implementation of the local search procedure above, the facilities
in the lists Lin and Lout are scanned in a circular fashion and a locally optimal solution
is found after a full pass of the two lists without discovering a cost-decreasing move.
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6. Computational results

Computational tests are conducted on three different data sets that have been fre-
quently used in related literature: the US dataset with 263 demand points (Snyder
and Daskin, 2005), the UK dataset with 250 demand points (Liberatore and Scaparra,
2011) and the London Ontario (LN) dataset with 150 demand points (Goodchild and
Noronha, 1983). The GRASP approach is implemented in C++ and compiled using
Microsoft Visual Studio 2017. The linear formulation is solved using CPLEX version
12.5 Callable Libraries. Experiments are performed on the same AMD Ryzen 7-1700
CPU @ 3.0 GHz workstation with 8GB of RAM, running on Microsoft Windows 10.

With the aim of providing a thorough analysis, we consider three cases to model the
probability of failures. Specifically, we look at economic concepts such as production
function and return of scale to formulate how failure probabilities depend on protection
investments. In economy, a return to scale is said to be increasing (decreasing) when
the output grows more (less) than proportionally with the input. With this in mind, we
introduce a convex function (qjl = qj0

2l ) showing an increasing return to scale whereby
the rate of improvement (i.e., reduction of the probability of failure) decreases as the
investment increases. This models cases where significant benefits can be attained with
small initial investments. Conversely, the concave function (qjl = qj0(λ−lλ )0.6) is used to
model cases where big investments are required to obtain significant reductions of the
risk of failure. In this case, the rate of failure probability reduction increases as more

resources are employed. We also consider a linear function (qjl = qj0− ( qj0−0.5qj0/2λ

λ )l)
where the reduction of failure probability is directly proportional to the level of in-
vestment. Furthermore, we consider two risk scenarios by setting qj0 equal to 0.1 and
0.3, respectively (Figures 1). These capture two cases where unprotected facilities have
10% and 30% chances of being disrupted. Note that we also run experiments with site-
specific failure probabilities qj0 drawn in the interval [0.1, 0.3]. However, the results
were very similar and therefore are not reported for the sake of brevity.
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Figure 1.: Failure probabilities VS protection levels. Convex, linear and concave func-
tions.

Similarly to Berman et al. (2007) and O’Hanley et al. (2013), preliminary tests
highlight numerical difficulties when using Cplex to solve PMFP-L. These numerical
issues are due to the presence in the model objective of terms which differ by several
orders of magnitude (obtained as a product of probabilities). As a results, the solver
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sometimes converges to solutions which are proven to be sub-optimal since they are
worse than the ones obtained heuristically. To address this issue, we rescale the objec-
tive and constraints by multiplying them by a suitable scale factor. The value of the
scale factor is computed by trial and error, using the GRASP solutions as benchmarks.
Its value is set to 10,000. We refer to this scaled version of the model as PMFP-LS.

Let b̄ = λp be the budget needed to protect the whole system at the highest level.
In the experiments we define b as a percentage of b̄ and let it range in {5%, 15%, 25%}.
Finally, all datasets are tested with 30, 40 and 50 open facilities. Considering larger
numbers of facilities within this context seems unnecessary given that supply sys-
tems with a very large number of assets are inherently resilient to external disruption
(Scaparra and Church, 2008b).

Tables 1, 2 and 3 summarize the computational results on the UK, US and LN
datasets, for the three probability functions. The first three columns show the risk
scenario, the number of facilities and the available budget, respectively. The best
objectives found by PFMP-LS are listed in the obj columns. Columns diff show the
relative difference between obj and the solutions found by PMFP-L and GRASP.
Finally, columns t report the computing times in seconds for each method.

With the concave probability function (Table 1), all three methods return the same
solutions for every scenario in the US and UK datasets, without significant differences
in computing times. In the LN dataset, CPLEX fails to identify the optimal solutions
while solving PFMP-L when qj0 = 0.1. This phenomenon is due to the numerical er-
rors previously discussed. Specifically, PMFP-L returns the näıve solution (highlighted
with the star superscript) without any protection implemented. This results in large
objective gaps that increase with increasing values of the budget b.

UK US LN
PFMP-LS PMFP-L GRASP PFMP-LS PMFP-L GRASP PFMP-LS PMFP-L GRASP

qj0 p b% obj sec diff% sec diff % sec obj sec diff % sec diff % sec obj sec diff % sec diff % sec

0.1

30
5 415429 1.2 0.0 0.8 0.0 0.1 465979 1.4 0.0 1.2 0.0 0.1 103288 0.5 1.4* 0.3 0.0 0.1

15 397111 1.2 0.0 0.9 0.0 0.4 431735 1.5 0.0 1.0 0.0 0.3 100563 0.4 4.2* 0.2 0.1 0.2

25 384635 1.2 0.0 0.8 0.0 0.5 407606 1.3 0.0 0.9 0.0 0.5 98640 0.4 6.2* 0.2 0.0 0.3

40
5 325422 0.9 0.0 0.7 0.0 0.2 328848 1.3 0.0 0.8 0.0 0.2 78781 0.4 2.2* 0.2 0.0 0.1

15 308444 1.0 0.0 0.6 0.0 0.5 301666 1.1 0.0 0.7 0.0 0.6 76748 0.4 4.9* 0.2 0.0 0.3

25 296867 0.9 0.0 0.6 0.0 0.8 287830 1.2 0.0 0.7 0.0 0.9 74909 0.4 7.5* 0.3 0.0 0.4

50
5 267178 1.3 0.0 0.9 0.0 0.3 251895 1.4 0.0 0.9 0.0 0.3 63434 0.4 2.0* 0.2 0.0 0.1

15 248334 1.1 0.0 0.7 0.0 0.9 233739 1.5 0.0 0.9 0.0 1.0 61152 0.4 5.8* 0.2 0.0 0.4

25 238987 1.1 0.0 0.8 0.0 1.2 221845 1.3 0.0 0.8 0.0 1.5 59236 0.3 9.3* 0.2 0.0 0.5

0.3

30
5 604323 1.6 0.0 1.8 0.0 0.1 746660 2.9 0.0 1.7 0.0 0.1 138245 0.9 0.0 0.9 0.0 0.1
15 535772 2.8 0.0 1.5 0.0 0.4 625624 1.8 0.0 1.7 0.0 0.3 128101 0.8 0.0 0.7 0.0 0.2
25 492473 3.4 0.0 1.5 0.0 0.6 545696 2.8 0.0 1.9 0.0 0.5 121135 1.3 0.0 1.2 0.0 0.3

40
5 485594 1.8 0.0 1.7 0.0 0.2 542957 1.6 0.0 1.4 0.0 0.2 109325 0.5 0.0 0.5 0.0 0.1
15 424739 1.7 0.0 1.3 0.0 0.6 452617 1.4 0.0 1.4 0.0 0.7 102020 0.9 0.0 1.0 0.0 0.3
25 386546 2.1 0.0 1.5 0.0 0.9 398320 2.4 0.0 1.6 0.0 0.9 95427 0.6 0.0 0.7 0.0 0.4

50
5 412671 3.9 0.0 1.7 0.0 0.3 434233 2.3 0.0 2.3 0.0 0.3 92316 0.8 0.0 1.1 0.0 0.1
15 348182 3.6 0.0 1.5 0.0 0.9 364506 3.9 0.0 2.1 0.0 1.1 84679 1.4 0.0 1.1 0.0 0.4
25 315727 4.1 0.0 1.6 0.0 1.3 319778 4.4 0.0 1.9 0.0 1.4 77948 0.7 0.0 0.7 0.0 0.7

Average 1.9 0.0 1.2 0.0 0.6 2.0 0.0 1.3 0.0 0.6 0.6 2.4 0.6 0.0 0.3

Table 1.: Computational results with the concave probability function

The Linear and Convex cases show more serious numerical difficulties across all
instances when qj0 = 0.1 (see Tables 2 and 3). Only näıve solutions are obtained
solving PFMP-L, for the US and UK datasets. As for the LN dataset, occasionally the
solver converges to a solution which is non-näıve but sub-optimal because the budget is
only used partially. This leads to gaps that despite being smaller than those observed
with the näıve solution, are still significant. Overall, PFMP-LS, returns the same or
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better solutions than PMFP-L and never finds solutions worse than the ones found
by GRASP. This accuracy comes at a slight computational cost. However, given the
modest computing times for solving these realistic-size problems, the increased time
is negligible.

UK US LN
PFMP-LS PMFP-L GRASP PFMP-LS PMFP-L GRASP PFMP-LS PMFP-L GRASP

qj0 p b% obj sec diff % sec diff % sec obj sec diff % sec diff % sec obj sec diff % sec diff % sec

0.1

30
5 409689 1.2 8.2* 1.2 0.0 0.1 456195 1.0 7.0* 1.0 0.0 0.1 102507 0.4 0.0 0.4 0.0 0.1

15 390119 1.4 13.6* 1.4 0.1 0.3 416425 1.2 17.2* 1.2 0.6 0.3 99398 0.4 0.2 0.5 0.0 0.2

25 374125 1.1 18.4* 1.1 0.6 0.5 392364 1.2 24.4* 1.2 1.2 0.5 96857 0.5 0.0 0.4 0.0 0.2

40
5 322056 0.9 10.4* 0.9 0.0 0.2 321876 1.0 9.1* 1.0 0.0 0.2 78339 0.3 0.0 0.3 0.0 0.1

15 301316 1.0 18.0* 1.0 0.8 0.5 292986 1.2 19.9* 1.2 0.7 0.6 75552 0.3 0.0 0.4 0.0 0.3

25 289657 1.4 22.8* 1.4 1.1 0.7 278595 1.5 26.0* 1.5 1.8 0.9 73086 0.4 0.0 0.4 0.3 0.3

50
5 263390 0.9 12.1* 0.9 0.0 0.3 247342 0.9 8.1* 0.9 0.0 0.3 62950 0.3 0.0 0.4 0.0 0.1

15 243059 0.9 21.5* 0.9 1.1 0.9 225894 1.0 18.3* 1.0 0.7 1.0 59882 0.4 0.0 0.4 0.0 0.4

25 232893 1.1 26.8* 1.1 0.8 1.2 213038 2.9 25.5* 2.9 1.0 1.3 57532 0.3 0.2 0.3 0.5 0.4

0.3

30
5 610193 2.2 0.0 2.3 0.0 0.1 749334 3.1 0.0 2.5 0.0 0.1 138327 0.7 0.0 0.8 0.0 0.1
15 549991 3.6 0.0 2.5 0.0 0.3 641521 3.8 0.0 2.2 0.0 0.3 129359 1.1 0.0 1.3 0.0 0.2
25 510842 6.6 0.0 3.0 0.0 0.5 570419 4.1 0.0 2.4 0.0 0.5 123094 2.8 0.0 1.6 0.0 0.2

40
5 495355 2.0 0.0 1.8 0.0 0.2 550852 1.5 0.0 1.7 0.0 0.2 109920 0.6 0.0 0.5 0.0 0.1
15 440210 2.3 0.0 1.7 0.0 0.5 469524 2.3 0.0 1.9 0.0 0.6 103345 1.6 0.0 1.0 0.0 0.2
25 405801 7.5 0.0 2.7 0.0 0.7 419913 9.4 0.0 2.2 0.0 0.8 97396 4.2 0.0 1.2 0.0 0.3

50
5 420129 1.9 0.0 1.9 0.0 0.2 438086 2.7 0.0 2.1 0.0 0.3 92589 0.9 0.0 0.7 0.0 0.1
15 362821 2.5 0.0 2.1 0.0 0.7 376112 5.5 0.0 2.5 0.0 1.0 85722 1.4 0.0 1.1 0.0 0.4
25 333401 7.8 0.0 2.2 0.0 1.3 335959 11.0 0.0 2.8 0.0 1.3 79657 3.0 0.0 0.9 0.0 0.4

Average 2.6 8.4 1.7 0.2 0.5 3.1 8.6 2.8 0.3 0.6 1.1 0.0 0.7 0.0 0.2

Table 2.: Computational results with the linear probability function

UK US LN
PFMP-LS PMFP-L GRASP PFMP-LS PMFP-L GRASP PFMP-LS PMFP-L GRASP

qj0 p b% obj sec diff % sec diff % sec obj sec diff % sec diff % sec obj sec diff % sec diff % sec

0.1

30
5 416096 1.2 5.6* 1.2 0.0 0.1 461001 1.0 3.9* 1.0 0.0 0.1 102741 0.3 1.0 0.2 0.0 0.1

15 396920 1.1 10.5* 1.1 0.2 0.4 429181 1.3 11.6* 1.3 0.2 0.3 100034 0.4 2.6 0.2 0.0 0.2

25 385230 1.3 13.9* 1.3 0.3 0.5 411095 1.4 16.5* 1.4 0.5 0.5 97776 0.4 4.6 0.2 0.1 0.2

40
5 326653 0.9 7.3* 0.9 0.0 0.2 325813 1.0 7.8* 1.0 0.0 0.2 78613 0.3 2.4* 0.2 0.0 0.1

15 310189 1.2 12.5* 1.2 0.2 0.5 303961 1.1 15.5* 1.1 0.2 0.7 75991 0.3 6.0* 0.2 0.1 0.3

25 299511 1.1 16.6* 1.1 0.4 0.8 291035 1.4 20.7* 1.4 0.1 1.0 73918 0.3 8.9* 0.2 0.2 0.4

50
5 266817 0.8 8.4* 0.8 0.0 0.3 250190 0.8 4.6* 0.8 0.0 0.3 62976 0.3 2.8* 0.2 0.0 0.1

15 251078 1.0 14.9* 1.0 0.1 0.9 233287 1.1 9.9* 1.1 0.2 1.1 60408 0.3 7.1* 0.2 0.0 0.4

25 242201 1.2 19.1* 1.2 0.4 1.2 222031 1.2 14.8* 1.2 0.2 1.4 58631 0.4 10.4* 0.2 0.2 0.5

0.3

30
5 606080 2.4 0.0 2.5 0.0 0.1 727017 1.9 0.0 2.2 0.0 0.1 135988 0.7 0.0 0.8 0.0 0.1
15 536842 2.6 0.0 2.1 0.2 0.4 617371 2.6 0.0 2.4 0.3 0.3 126101 1.5 0.0 1.4 0.1 0.2
25 495940 5.3 0.0 3.0 0.4 0.5 556119 6.7 0.0 2.8 0.3 0.5 118158 2.2 0.0 1.0 0.3 0.2

40
5 488250 1.5 0.0 1.8 0.0 0.2 535404 1.6 0.0 1.7 0.0 0.2 108630 0.8 0.0 0.7 0.0 0.1
15 429674 5.9 0.1 2.8 0.5 0.6 455900 5.1 0.0 2.5 0.4 0.6 99257 1.1 0.0 1.1 0.1 0.3
25 391658 6.6 0.0 2.6 0.4 0.8 407515 8.7 0.0 3.1 0.9 0.9 92196 1.4 0.0 0.8 0.4 0.3

50
5 410609 1.4 0.0 1.7 0.0 0.3 425865 2.0 0.0 2.1 0.0 0.3 90859 0.8 0.0 0.7 0.0 0.1
15 355371 3.1 0.0 2.0 0.3 0.9 362392 10.0 0.0 2.7 0.5 1.0 81766 1.1 0.1 0.9 0.1 0.4
25 323116 6.5 0.0 2.3 0.9 1.2 320602 14.1 0.1 3.4 0.7 1.3 75568 2.1 0.0 1.0 0.3 0.5

Average 2.5 6.0 1.7 0.2 0.5 3.5 5.8 1.9 0.3 0.6 0.8 2.6 0.6 0.1 0.2

Table 3.: Computational results with the convex probability function

As expected, scenarios with high p and b values lead to slightly higher computing
times for both PFMP methods. The qj0 values also have some impact on the solution
time of the PMFP models, suggesting that riskier scenarios (higher values for qj0) are
somewhat more difficult to solve. GRASP, on the other hand, is neither sensitive to
the probability function nor to the value of qj0.

In Table 4, we evaluate how protection resources are invested. The purpose of the
analysis is to provide insights on how the failure probability function affects protection
policies. As in the previous tables, the first three columns identify the risk scenario,
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number of facilities and budget available. The other columns show the number of times
facilities are protected at a given level, for each of the probability functions. Similar
results (not reported) can be observed on the US and LN datasets.

Protection level l
1 2 3 1 2 3 1 2 3

qj0 p b% Concave Linear Convex

0.1

30 5 1 0 1 0 2 0 1 0 1
30 15 1 0 4 1 6 0 8 1 1
30 25 1 0 7 0 11 0 10 3 2
40 5 0 0 2 0 3 0 3 0 1
40 15 0 0 6 0 9 0 9 3 1
40 25 0 0 10 0 15 0 13 7 1
50 5 1 0 2 1 3 0 4 0 1
50 15 1 0 7 0 11 0 9 5 1
50 25 1 0 12 1 18 0 17 4 4
Total 6 0 51 3 78 0 74 23 13

0.3

30 5 1 0 1 1 0 1 2 1 0
30 15 1 0 4 1 0 4 8 1 1
30 25 1 0 7 1 0 7 11 4 1
40 5 0 0 2 0 0 2 3 0 1
40 15 0 0 6 0 0 6 9 3 1
40 25 0 0 10 0 0 10 17 5 1
50 5 1 0 2 1 0 2 4 0 1
50 15 1 0 7 1 0 7 9 5 1
50 25 1 0 12 1 0 12 17 4 4
Total 6 0 51 6 0 51 80 23 11

Table 4.: Number of fortified facilities for each protection level. UK dataset.

The Concave and Convex cases show opposite results for the two risk scenarios.
Specifically, with a concave probability function, most of the resources are used to
implement few high-level protections (l = 3). Conversely, with the convex probability
function, the protection focus is mostly on low-level protections (l = 1). The linear
case is more sensitive to the value of qj0. In fact, when qj0 = 0.1, the solutions appear
to be a trade-off between the Concave and Convex cases, with most of the protections
enforced at the mid-level (l = 2). However, when qj0 = 0.3, the behaviour changes
significantly, with the linear case generating exactly the same protection plans as
the concave case and protecting most of the facilities at the highest possible level.
These results highlight how choosing a suitable probability function is paramount to
identifying efficient fortification strategies. Estimating this function is largely problem
dependent and can be driven by historical data and experts’ judgment.

7. A case study

This section provides an application of PMFP to a real life problem. The supply net-
work is the Toronto general hospital network (Berman et al., 2007). The dataset is
generated by dividing Toronto into 96 areas whose demand is estimated based on the
number of residents and business dwellings. Each area is represented by its centroid.
The resulting 96-node network is shown in figure 2. The nodes with an identification
number represent the hospital locations. Of these, 16 are simple locations and 3 are
co-locations (i.e., more than one hospital located in the same node).
This case study is chosen to highlight how the model can be used to support planning
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decisions in the healthcare context, a topic that is sadly popular due to the ongo-
ing Covid-19 pandemic. The failure probability q is interpreted as the likelihood that
hospitals do not have enough resources (e.g., number of available beds) to satisfy the
required demand of patients, leading to the redirection of ambulances toward other
facilities. Accordingly, what we referred to as protection levels can now be interpreted
as investment levels to increase hospitals’ capacities. Small levels represent relatively
inexpensive plans (e.g., converting small available spaces, rationalising resources etc.),
whereas higher levels are used to model large and more expensive plans (e.g., building
a new ward). The protection budget ranges from 0% to 25%. Similarly to the com-
putational analysis, we consider two risk scenarios with qj0 equal to 0.1 and 0.3. For
example, when qj0 = 0.3, hospital j has a 30% chance that the emergency room is
full and ambulances have to be re-directed to other facilities, unless investments are
made. These probabilities are purposely set to high values to model scenarios where
health systems struggle to cope with high patient demand. This is particularly true
at peak periods throughout the year or during a pandemic. For example, during the
winter 2018 in the UK, one in six patients waited at least 30 minutes in the ambulance
before being admitted for treatment and, during the Christmas week, 39 patients had
to be diverted because hospitals had no resources available (The Guardian, 2018). At
the worst point of the Covid-19 pandemic in England, up to 40% of intensive care
patients had to be transferred to hospitals hundreds of miles away due to bed short-
ages (BBC, 2021). Canada faces similar problems, with hospitals often congested and
increasingly long wait times (CIHI, 2019). In Canada as well, the ongoing Covid-19
pandemic further exacerbated the situation (CBC, 2020).

Figure 2.: Location of Toronto Hospitals

7.1. Solution analysis

This analysis aims at studying the impact of increasing the protection budget on the
total expected transport cost (or travel distance). Solutions are obtained by solving
PFMP-LS with Cplex. Figures 3a and 3b show the percentage reduction in the ex-
pected cost against the protection budget levels considered.

In the lower risk scenario, as the budget increases, the linear function results in the
largest cost reduction, with a 6.4% decrement when b = 25%. The concave and convex
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Figure 3.: Expected cost reduction for different protection budget levels

functions show a similar behaviour in both risk scenarios. The cost reductions due
to protection are more significant in the high risk scenario. This is expected as often
larger risk also means larger room for improvements.

Figures 4a and 4b show marginal cost reduction contributions of each budget in-
crement. This is a useful information that decision makers can use to decide whether
a given budget increment is beneficial. The two risk cases do not show notable dif-
ferences. Overall, as often happens in fortification problems, the impact of the first
increments is the most significant. In fact, in both cases a 5% budget is responsible for
more than one third of the total benefits. The benefit of subsequent increments steadily
decreases until b = 20%, where minor benefits are obtained. This trend changes over
the last budget increment and seems to indicate a positive impact in increasing the
protection budget from 20% to 25%.
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Figure 4.: Marginal cost reduction for increasing protection budget levels

Figures 5 and 6, show the optimal investment plans obtained with a budget equal
to 5% and 25%. The concentric circles represent the three levels of investment.

Similarly to the computational experiments on the UK, US and LN datasets, the
plans with linear (Figures 6c and 6d) and concave (Figures 6e and 6f) probabilities are
the same under the higher risk scenario. Moreover, investment plans for the concave
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(a) B = 5%, convex probability (b) B = 25%, convex probability

(c) B = 5%, linear probability (d) B = 25%, linear probability

(e) B = 5%, concave probability (f) B = 25%, concave probability

Figure 5.: Investment plans (Low risk)

probability function do not change across risk scenarios (Figures 5e, 5f, 6e and 6f). On
the other hand, plans with the convex probability slightly change. For example, under
lower risk and B = 5% (Figure 5a), lowest level investments are selected for 3 hospitals
(11, 37, and 89). Increasing the risk results in hospital 37 being dropped from the
investment plan and hospital 11 being upgraded to level 2 (Figure 6a). More noticeable
are the differences in the investment plans with the linear probability function. In fact,
under lower risk, the plans result in medium-low level investments on a large number
of hospitals (7 when B = 25%, Figure 5d). However, the higher risk scenario leads to
plans with fewer facilities protected but higher level investments (Figure 6d).

Overall, independently on the risk scenario or probability function, the figures sug-
gest that there are a number of hospitals which are clearly more critical than others.
An example is hospital 11, which appears in every investment plan.

7.2. Random VS worst-case disruptions

In the following analysis, we compare the solutions obtained with PMFP to hedge
against random disruptions against the solutions computed for worst-case disruptions.
For the latter, we use the RIMF model introduced by Scaparra and Church (2008a).
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(a) B = 5%, convex probability (b) B = 25%, convex probability

(c) B = 5%, linear probability (d) B = 25%, linear probability

(e) B = 5%, concave probability (f) B = 25%, concave probability

Figure 6.: Investment plans (High risk)

This model identifies which facilities to protect so as to minimise the impact of the
worst-case loss of r facilities. Both interdictions and protections are binary. Conse-
quently, in order to provide a meaningful comparison, we restrict PMFP to two in-
vestment levels (i.e., l = 0, 1). We let qj0 range in [0.10, 0.15, 0.20, 0.25, 0.30], whereas
qj1 is always set to 0. In RIMF, we set r = [1, 2, 3, 4, 5]. We test the same budget
levels (from 5% to 25%), assuming the same cost for investments across the different
models. Overall, 25 scenarios are considered for both PMFP and RIMF. The goal of
this analysis is not to compare costs directly, as they are obtained under significantly
different assumptions, but to analyse to what extent the investment plans differ and
how decision makers can combine the findings from both models.

Table 5 aggregates the results of the 25 scenarios considered, providing insights
about the most critical hospitals according to PMFP and RIMF. The first column
shows the hospital index. Columns 2 to 5 report the number and percentages of times
a specific hospital appears in the optimal investment plans for PMFP and RIMF,
respectively. The table indicates that there are some similarities between the opti-
mal investments obtained assuming random and worst-case disruptions. In fact, both
models clearly suggest that hospital 11 plays a critical role and requires investments
independently on the type of risk scenario considered. Four additional hospitals are
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selected by PMFP, five by RIMF. However, how frequently these hospitals are selected
changes between the two cases. For example, hospital 37 is selected 60% of the time
by PMFP, only 28% by RIMF. Another noticeable difference is the presence of hospi-
tals 16, 77 and 92 in the RIMF solutions Interestingly, these 3 hospitals are selected
by RIMF for large values of r (i.e., 4, 5). This seems to indicate that the differences
between PMFP and RIMF are more significant in risky scenarios (i.e., for high values
of r).

PMFP RIMF
Hospital No. times Perc No. times Perc

11 25 100% 25 100%
89 20 80% 15 60%
37 15 60% 7 28%
81 10 40% 11 44%
95 5 20% 8 32%
77 0 0% 5 20%
16 0 0% 3 12%
92 0 0% 1 4%
20 0 0% 0 0%
22 0 0% 0 0%
25 0 0% 0 0%
34 0 0% 0 0%
39 0 0% 0 0%
43 0 0% 0 0%
44 0 0% 0 0%
52 0 0% 0 0%
54 0 0% 0 0%
57 0 0% 0 0%
65 0 0% 0 0%

Table 5.: Hospitals’ frequency in the optimal plans obtained by PMFP and RIMF

The following analysis aims at testing the robustness of the solutions generated
by the two models. Specifically, we test how well a plan obtained by RIMF performs
under probabilistic disruptions. Table 6 shows the relative cost increment generated
by using the RIMF optimal investment plans within the PMFP model.

r
1 2 3 4 5

qj0

0.1 0.0% 0.0% 0.3% 0.3% 0.7%
0.15 0.0% 0.0% 0.5% 0.5% 0.9%
0.2 0.0% 0.0% 0.5% 0.6% 1.2%
0.25 0.0% 0.0% 0.6% 0.8% 1.4%
0.3 0.0% 0.0% 0.6% 0.9% 1.5%

Table 6.: Cost increment using RIMF optimal investment plans

Results highlight that cost increments are in general small. The first two columns
report no cost increments as the solutions obtained by RIMF with r = 1, 2 are equal
to the ones obtained by PFMP. On the other hand, the RIMF solutions are different
for larger values of r. In other words, decisions generated by RIMF considering large
disruption scenarios tend to work poorly within PMFP as they select new hospitals
for protection (i.e., 16, 77 and 92) which are not deemed critical by PFMP.

Overall, this analysis indicates that even under simplified assumptions (i.e., λ = 1),
PMFP and RIMF show differences that can lead to sub-optimal decisions if investment
plans are to face disruption scenarios different from the ones they are designed to
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tackle. We further investigate this issue by suggesting and testing decision policies
which incorporate RIMF plans into the PMFP model. For this analysis, we return to
the more generic assumptions on investment levels (λ = 3), while considering concave,
linear and convex probability functions and both risk scenarios. Let JRIMF be the set
of facilities fortified by a RIMF optimal solution. The following policy, referred to as
π(l̄), enforces that any hospital selected by RIMF , should receive an investment of at
least l̄. Formally, this is achieved by adding to PMFP the following set of constraints:

∑
l≥l̄

zjl ≥ 1 ∀j ∈ JRIMF (21)

Lower Risk Higher Risk
r Concave Linear Convex Concave Linear Convex

π(1)

1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
2 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
4 0.1% 0.0% 0.0% 0.3% 0.2% 0.0%
5 0.1% 0.0% 0.0% 0.2% 0.1% 0.0%

π(2)

1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
2 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
4 0.2% 0.0% 0.1% 0.3% 0.4% 0.3%
5 0.2% 0.0% 0.0% 0.5% 0.4% 0.2%

π(3)

1 0.0% 1.3% 0.3% 0.0% 0.0% 1.3%
2 0.0% 1.3% 0.3% 0.0% 0.0% 1.3%
3 0.1% 1.3% 0.4% 0.2% 0.1% 1.4%
4 0.4% 1.6% 0.6% 0.7% 0.6% 1.9%
5 0.4% 1.6% 0.5% 0.9% 0.7% 1.7%

Table 7.: PMFP cost increments under π(l) policy

Table 7 shows the relative cost increment when policy π is used assuming a budget
of 25%. Results show that some decisions from RIMF can be incorporated with small
trade-offs on costs. Protecting the facilities selected by RIMF at the lowest level (i.e.,
π(1)) results in cost increments of at-most 0.3%. Marginally higher cost increments are
observed with π(2). However, more significant cost increments appear with π(3). This
is the consequence of forcing protection investments on facilities selected by RIMF.
Generally, the policy’s performance decreases as the risk increases (i.e., higher values of
qj0). This could seem counterintuitive as one would expect RIMF to be a model better
suited to tackle high risk scenarios. However, results clearly indicate that even within
high risk scenarios there are differences between randomised and strategic disruptions.
In summary, this analysis suggests that a synthesis between the two models for this
case study could be achieved via policy π at a relatively low cost.

8. Discussion and Conclusions

In this paper, we introduce an optimisation model to identify protection investment
strategies which minimise the expected transportation cost of a median service system
under probabilistic disruptions. We consider different levels of investment to reduce
the probability of failure of an asset. The resulting model is non-linear. A linearisation
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of the model, referred to as PFMP-L, is achieved via probability chains. As noted in
the literature, the numerical issues induced by formulations with a similar structure to
PFMP-L often cause general purpose solvers to terminate with sub-optimal solutions.
The proposed GRASP heuristic helps identify such sub-optimal solutions and calibrate
suitable scale factors to redress the numerical problems. The heuristic also proves
effective at identifying optimal and near-optimal solutions. Finally, a case study on
the Toronto hospitals’ network offers insights on how the proposed model can be used
to improve healthcare systems so that they are better prepared to cope with high
patient demand, for example during epidemic or pandemic events. The case study also
shows how robust solutions can be obtained by combining the findings of our model
and the finding of a worst-case scenario model in the decision making process.

Future research direction should look into the temporal components of the problem.
For instance, the duration of the disruption and the recovery time can be linked to the
protection investments. In the network reliability literature the assumptions of inde-
pendent failure is often made. This is realistic in some applications settings. However,
when considering natural disasters affecting regions or large areas, using correlated
failure probabilities is more realistic and should be considered in future studies. This
is true also during pandemics as all health care centers in hotspot areas may face sim-
ilar disruptions due to sudden surges in demand for hospitalization. Adding location
decisions as well as introducing capacities and linking them to disruption and invest-
ment efforts is also a realistic and promising research direction. Moreover, it will be of
interest to adapt and apply the model to specific industries, using application-driven
probability functions and different numbers of protection levels. All the directions
mentioned above are bound to make mathematical models and solution algorithms
more complex. Extending the current linearisation approach to a capacitated network
is a challenging problem. On the other hand, the GRASP heuristic could be modified
to account for capacities with relatively minor changes.

Finally, the Covid-19 pandemic provides a strong motivation to develop more spe-
cialized complex models for healthcare systems which combine facility protection mea-
sures (e.g., capacity expansion as in our case study) with the optimal re-configuration
of the system (e.g., creation of dedicated Covid-19 wards/hospitals and repurposed ar-
eas). The development of such models is crucial to ensure that hospitals can deal with
sudden patient surge while also maintaining the provision of other essential clinical
services and minimizing the risk of infections for both patients and health care person-
nel. Within this context, another interesting direction is to combine facility protection
models with models which optimize staffing and supply of equipment (e.g., personal
protection equipment). This is motivated by the direct impact that the lack of equip-
ment can have on staffing shortages and, hence, on service provision (CDC, 2020).
Holistic optimisation models incorporating all these aspects should be developed and
possibly hybridized with simulation methods to model the complexity and uncertain
factors involved in pandemics (Currie et al., 2020).

Acknowledgements

The authors are very grateful to Oded Berman, Dmitry Krass and Mozart B. C.
Menezes for providing the Toronto hospitals’ network case study.

22



References

Aksen, D. and Aras, N. (2012). A bilevel fixed charge location model for facilities under
imminent attack. Computers & Operations Research, 39(7):1364–1381.

Alcaraz, J., Landete, M., and Monge, J. F. (2012). Design and analysis of hybrid metaheuristics
for the reliability p-median problem. European Journal of Operational Research, 222:54–64.

Altay, N. and Green III, W. G. (2006). OR/MS research in disaster operations management.
European Journal of Operational Research, 175(1):475–493.
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