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Abstract

Past and recent events have shown that railway infrastructure systems are particu-

larly vulnerable to natural catastrophes, unintentional accidents and terrorist attacks.

Protection investments are instrumental in reducing economic losses and preserving

public safety. A systematic approach to plan security investments is paramount to

guarantee that limited protection resources are utilized in the most efficient manner.

In this article, we present an optimization model to identify the railway assets which

should be protected to minimize the impact of worst case disruptions on passenger

flows. We consider a dynamic investment problem where protection resources become

available over a planning horizon. The problem is formulated as a bilevel mixed-integer

model and solved using two different decomposition approaches. Random instances of

different sizes are generated to compare the solution algorithms. The model is then

tested on the Kent railway network to demonstrate how the results can be used to

support efficient protection decisions.

Keywords. Strategic planning, transportation, protection, bilevel programming, decompo-

sition.

1 Introduction

Nowadays the social well-being of people highly relies on the well functioning of critical

interconnected infrastructures such as transportation, information, telecommunication, and

electric power systems. Planning and protecting infrastructure systems is a complex task,

especially because of their dimension and interdependence. Even small random disruptions

can severely affect the normal functioning of one or more infrastructure. Intelligent attacks
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or large natural catastrophes can have even more dramatic consequences in terms of both

economic and life losses. Examples of such events include the 1995 Paris metro bombing,

the 2004 Madrid train bombing, the 2005 London underground suicide attacks, and the 2010

Moscow bombing. Most recently, severe floods hit some western regions of the UK and

forced the Network Rail to pay £12.5m for the suppressed services and further £15m to

repair the infrastructure (Wintour and Topham, 2014). It is therefore paramount to protect

infrastructure systems so that continuity in service provision and safety for the users can be

guaranteed, even when disruptions occur.

A critical aspect in planning infrastructure protection is the scarce availability of protec-

tion resources. Protecting all the components of an infrastructure system to targeted safety

levels may in fact be cost prohibitive. For example, the Kent (UK) railway system serves 179

stations and has 1094 miles of tracks. Protecting every station and all the tracks is econom-

ically impossible. Another complicating factor in protecting railways is that they are open

and easily accessible systems. This renders them highly vulnerable to all kinds of disruption

and requires careful identification of suitable protection measures. These may include the

structural reinforcement of vulnerable parts (tunnels and bridges), video surveillance of crit-

ical areas (crosses, stations) and the use of a wide range of sensors to detect intrusions and

obstacles on tracks. Since resources are limited, it is important to identify and protect the

most critical assets of the infrastructure.

In recent years, several mathematical models have been developed to identify systems’

vulnerabilities and plan protection strategies for critical infrastructures. Predominantly, in-

terdiction and protection of infrastructure systems have been modelled using multi-level op-

timization. Multi-level optimization models represent an effective tool to “model a complete

infrastructure system and its value to society, including how losses of the system’s assets re-

duce that value, or how improvements in the system mitigate lost value”(Brown et al., 2006).

These models are also referred to as defender-attacker models since they emulate the game

between two actors with opposite aims. The defender’s aim is to distribute limited defence

resources so as to minimize the effects of a worst case disruption. On the other hand, the

attacker’s aim is to choose the attack plan which minimizes the system’s value (or maximize

the system’s cost). The attacker is an intelligent actor who has perfect knowledge of the

system and is always able to inflict the maximum damage. In other words, he is a proxy to

model worse-case disruptions. Clearly this kind of models are very useful to simulate terrorist

attacks and intentional disruptions. Nonetheless, given the criticality of infrastructure sys-

tems, protection efforts are often guided by risk-averse decision making criteria, thus making

these models extremely valuable also for problems involving natural catastrophes.

A third actor, referred to as the system user, is often used in multi-level models to
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evaluate the system’s value after protection and interdiction. Bilevel attacker-user models

are typically used to identify the vulnerabilities of a system, by highlighting the outcomes of a

worst-case interdiction. Trilevel defender-attacker-user models are typically used to identify

the system’s components that should be hardened or protected. Sometimes the models

mirroring the actions of the attacker and the system user can be collapsed into a single

model (Church et al., 2004, Losada et al., 2012a), so that a single level model can represent

an interdiction problem whereas a bilevel model can represent a protection problem.

The main contribution of this paper is to study a dynamic network protection problem.

The model we present is quite general and, albeit designed for railway infrastructures, can be

applied in other contexts as well. The model aims at distributing protection resources among

the assets of a railway system so as to maximise its survivability after a worst case disruption.

Generally, survivability can be described as “the capability of a system to fulfill its mission,

in a timely manner, in the presence of attacks, failures, or accidents”(Ellison et al., 1997).

According to the specific context, network survivability can be measured using different

metrics. For instance, for shortest-path based problems, the length of a path is the key

measure to assess whether a network is vulnerable and reliable. To evaluate survivability, we

use the same metric introduced by Myung and Kim (2004), Murray et al. (2007), Matisziw and

Murray (2009) and Scaparra et al. (2015). In these works, network survivability is measured

in terms of lost or unserved system flow. In our model, the flow between an origin and a

destination node is considered lost if after a disruption affecting some network components,

the two nodes are no longer connected or they are connected but the post-disruption service

is significantly deteriorated (i.e., alternative routes are too long from a user’s perspective).

In this case, in fact, rail network users may abandon the trip or resort to another mode of

transport.

An important issue that should be taken into account when modelling protection efforts

is that protection resources usually become available at different times. Our model addresses

this issue by including a temporal component whereby the available budget for protection

is spread over a planning horizon. This choice renders the model more applicable to real

situations. In fact, public expenditures to protect and modernize critical infrastructures

are usually set in spending reviews that cover a number of years. For instance, the last

UK spending review (HM Treasury, 2013) allocated £100bn for the modernisation of the

energy and transportation sectors. This budget is spread over a five-year period (2015-2020).

Similarly, after the 2013-2014 floods in the UK, £130m were allocated by the government

to repair flood defences. Of the whole budget, £30m were made available in 2014, the rest

in 2015 (Carrington and Weaver, 2014). In addition, the UK Department for Environment,

Food and Rural Affairs (DEFRA) set out a six-year programme of capital investment to
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improve flood defences up to 2021, of £2.3bn. Fixed capital settlements were allocated

for each year, although flexibility to move funds between years was allowed for effective

delivery (DEFRA, 2015). These examples demonstrate that funds availability is often time-

related. Consequently, prioritizing expenditures over time is key to the development of long-

term, effective strategies for improving infrastructure’s security and resiliency. To respond

to the practical planning needs of railway stakeholders and operators, we therefore propose

a protection model that optimizes the allocation of scarce protection resources over time.

Our model builds upon and extends the static protection model proposed by Scaparra et

al. (2015) by considering dynamic investments. The model has a bilevel structure where the

aim of the upper level is to find the best allocation of protection resources over a planning

horizon so as to minimize the amount of disrupted flow. The lower level is used to evaluate

worse case losses in each time period in response to a given protection plan. The resulting

multi-period bilevel model is significantly more difficult to solve than its static counterpart.

To find optimal solutions to problem instances of realistic size, we propose two decomposition

approaches tailored to the dynamic structure of the model and test them on a set of new,

randomly generated instances. Given that the multi-period structure of the model can lead to

solve the same lower level program multiple times in our iterative approaches, we streamline

the algorithms by using efficient data structures, thus avoiding recomputing solutions already

found. The use of this expedient proved to be extremely efficient and on some preliminary

tests reduced the overall computing time of the decomposition methods by as much as 80%.

Finally, some practical insights, including an analysis of dynamic investments, are discussed

for a real network representing the railway infrastructure of Kent (UK).

The remainder of this paper is organized as follows. Sec. 2 provides a review of the

literature related to this work. In Sec. 3, the bilevel formulation of DNP is introduced. Sec.

4 provides a description of the decomposition algorithms. In Sec. 5, we report computational

results on two sets of random problems, while the results on the Kent case study are analysed

in Sec. 6. Some conclusive remarks are discussed in Sec. 7.

2 Background

Since the seminal paper of Wollmer (1964), several papers have appeared in the literature

which deal with network interdiction problems. The underlying idea of these models is to

find the critical arcs and/or nodes of a network. An element is critical if, after interdiction,

the performance of the network drops significantly. Therefore a key issue in these models is

to identify a suitable metric to evaluate network performance.

One stream of the literature has analysed the problem of finding the network components
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that, when interdicted, minimize the maximum flow between pairs of nodes (Wollmer, 1964).

Wood (1993) introduced an integer programming formulation for this problem and extended

the model by considering multiple resources and multiple commodities. Since real life in-

terdiction problems are intrinsically characterized by uncertainty (what will the interdicted

components be? when will they be interdicted? to what extent?), subsequent work has fo-

cused on problems including stochastic and probabilistic elements. For instance, Cormican

et al. (1998) proposed a stochastic model aiming at minimizing the expected maximum flow

on a network while taking into account that interdictions can be unsuccessful. They also con-

sidered further extensions in which arc capacities are random variables and multiple attacks

on the same arc can be attempted. Lim and Smith (2007) worked on a multi commodity

flow network, considering both discrete and continuous interdiction. Other recent network

flow interdiction models can be found in Afshari and Kakhki (2013), Altner et al. (2010),

and Royset and Wood (2007).

Another stream of the literature has focused on distance based networks. The models

developed in this framework aim at identifying the elements that, if disrupted, maximize

the distance, travel time or transportation cost between nodes. Fulkerson and Harding

(1977) studied the interdiction problem in a shortest path network using continuous variables.

Israeli and Wood (2002) formulated the same problem using binary interdiction variables and

introduced different solution approaches. Hemmecke et al. (2003) extended the problem to

stochastic networks. Bayrak and Bailey (2008) studied the asymmetric interdiction problem,

considering that the two actors have different levels of knowledge of the network.

A third stream has dealt with network connectivity. In these problems, the aim of the

interdictor is to use offensive resources in order to reduce connectivity. Grubesic et al.

(2008) used graph theory to assess network connectivity and vulnerability. Several metrics

to estimate the network connectivity have been proposed. Albert et al. (2000) used the

network diameter, Grubesic et al. (2003) the degree of a node. Shen et al. (2012) used three

different metrics: the number of connected components, the largest component size, and the

minimum cost required to reconnect the graph after the loss of some nodes.

Interdiction models are a useful tool to identify infrastructure vulnerabilities and critical

assets. However, protection decisions must be explicitly represented into a model to ensure

that the most efficient resource allocation is identified. In fact, choosing the elements to

protect from the interdiction set obtained by solving an attacker-user model may lead to

sub-optimal solutions (Church and Scaparra, 2007). The literature stream dealing with

protection models has mainly focused on facility protection in supply chain systems (Scaparra

and Church, 2008a, Liberatore and Scaparra, 2011, Liberatore et al., 2012, Losada et al.,

2012b, Bricha and Nourelfath, 2015). Only a few papers have dealt with protection issues
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in transportation networks. Cappanera and Scaparra (2011) analyzed a trilevel protection

problem to study the optimal allocation of protection resources in shortest path networks.

Yates and Sanjeevi (2013) studied a variation of the shortest path fortification problem where

the aim of the interdictor is to travel across a network towards a precise target without

being detected. The defender’s goal is to find the optimal allocation of protection devices

to detect the intrusions. Du and Peeta (2014) presented a stochastic model to identify the

optimal allocation of defense resources in order to minimise the post-disaster response time

of a transportation network. Talarico et al. (2015) proposed a model to allocate security

resources in a multi-level chemical transportation network.

If we narrow the focus to the railway context, the number of papers dealing with pro-

tection is quite limited. Peterson and Church (2008) introduced a framework to assess the

vulnerability of rail networks and apply it to the State of Washington infrastructure. Laporte

et al. (2010) proposed a model to design a robust railway transit network maximizing its min-

imum utility (e.g., trip coverage) when one link can fail. This model was later extended by

Perea and Puerto (2013).

The allocation of defensive and offensive resources over time has recently been analysed by

a few researchers within a game theoretic framework. The majority of these models focused

on the protection and disruption of a single target. For example, Levitin and Hausken

(2010) proposed a defender-attacker model where the attacker can launch sequential attacks.

Hausken and Zhuang (2011a) considered a government-terrorist game over multiple time

periods, where the terrorist can stockpile its resources for later attacks and the government

can allocate resources for defending the asset or attack the terrorist’s resources. Other single-

asset sequential defender-attacker problems can be found in Hausken and Zhuang (2011b),

Hausken and Zhuang (2012), and Levitin and Hausken (2012a). A multiple-target version of

these problems has been considered in Levitin and Hausken (2009), who studied the problem

of protecting identical elements in a parallel system against two sequential attacks. Levitin

and Hausken (2012b) extended this model by including the possibility of imperfect detection

of the first attack outcomes. In Levitin and Hausken (2013) both the attacker and the

defender can stockpile their resources over a planning horizon. Note that the game-theoretic

approach used in this literature stream is quite different from our approach in that the

problems are represented as a two-stage game and require a closed-form analytic solution

for the identification of Nash equilibria. These solutions cannot always be easily identified

and, consequently, the application of these models is often limited to simple problems (i.e.,

small systems or problems with a single target or only two time periods). On the contrary,

our proposed approaches, based on the use of sophisticated decomposition techniques for

solving mixed-integer bilevel programs, are able to solve problems where all of the network
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components (nodes and arcs) can be protected and interdicted, the planning horizon can

include several time periods, and the networks have realistic sizes.

3 The Dynamic Network Protection Problem (DNP)

We consider an undirected graph G = (N,A) representing the transportation network. In a

railway network, the nodes represent the stations and the arcs are the tracks connecting the

nodes. Assumptions, parameters and decision variables are introduced below:

(a) The problem is studied over a planning horizon represented by the set T = {0, 1, ..., T̂}.

(b) Interdiction is complete (i.e., an interdicted component is completely unusable in the

time period when interdiction takes place).

(c) A protected element becomes completely immune to interdiction. Therefore the same

element does not need to be protected more than once in the planning horizon. Both

arcs and nodes can be disrupted and protected. This assumption is made to contemplate

the possibility of disruptions of tracks, tunnels, bridges and stations at the same time.

(d) Each element has a different protection cost and there is a limited protection budget

in each time period. Any unutilized budget can be carried forward to the next time

period.

(e) In each time period, interdiction resources are limited and the amount of resources

needed to disrupt a component varies according to the component size and topology.

(f) In case of disruption, system users are willing to use alternative paths to reach their

destinations only if they are not significantly longer than their shortest route. We refer

to these alternative routes as acceptable paths. All the paths that establish connectivity

between two nodes s and d are computed in a preprocessing phase. The paths that are

too long from a user perspective are then removed from further considerations. This

evaluation is done by comparing each path with the shortest one: all paths exceeding

a given length threshold are discarded.

(g) The daily traffic flow between any two nodes is known with certainty and the flow

matrix is symmetric.

The bilevel model for DNP uses the following notation.

Indices, sets and parameters

s ∈ N : index used for flow sources.
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d ∈ N : index used for flow destinations.

i ∈ N : index used for network nodes.

j ∈ A : index used for network arcs.

t, u ∈ T : index used for time periods.

fsd : traffic demand between s and d.

Nsd : set of acceptable paths that connect s and d.

r ∈ Nsd : index used for network paths.

N(r) : set of nodes along path r.

A(r) : set of arcs along path r.

qt : cumulative protection budget available up to period t.

pt : amount of interdiction resources in period t.

qni : estimate of the amount of resources needed to protect node i.

pni : estimate of the amount of resources needed to disrupt node i.

qaj : estimate of the amount of resources needed to protect arc j.

paj : estimate of the amount of resources needed to disrupt arc j.

λt : weight used in the objective function to give different importance to the time periods.

Decision variables

Xn
it = 1 if node i is disabled in period t; 0 otherwise.

Xa
jt = 1 if arc j is disabled in period t; 0 otherwise.

Y n
it = 1 if node i is protected in period t; 0 otherwise.

Y a
jt = 1 if arc j is protected in period t; 0 otherwise.

Zsdt = 1 if the flow between s and d is unserved in period t; 0 otherwise.

The DNP can be formulated as follows.

[DNP] min
Y

F (Y) (1)

s.t.
t∑

u=1

(
∑
i∈N

qni Y
n
iu +

∑
j∈A

qajY
a
ju) ≤ qt ∀t ∈ T (2)

Y n
it ∈ {0, 1} ∀i ∈ N,∀t ∈ T (3)

Y a
jt ∈ {0, 1} ∀j ∈ A,∀t ∈ T (4)

where F (Y) = max
X

∑
t∈T

λt
∑
s

∑
d

fsdZsdt (5)

s.t. Xn
it ≤ 1−

t∑
u=1

Y n
iu ∀i ∈ N,∀t ∈ T (6)
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Xa
jt ≤ 1−

t∑
u=1

Y a
ju ∀j ∈ A, ∀t ∈ T (7)

∑
i∈N

pniX
n
it +

∑
j∈A

pajX
a
jt ≤ pt ∀t ∈ T (8)

∑
i∈N(r)

Xn
it +

∑
j∈A(r)

Xa
jt ≥ Zsdt ∀s, d ∈ N, r ∈ Nsd,∀t ∈ T (9)

Xn
it ∈ {0, 1} ∀i ∈ N,∀t ∈ T (10)

Xa
jt ∈ {0, 1} ∀j ∈ A, ∀t ∈ T (11)

Zsdt ∈ {0, 1} ∀s, d ∈ N,∀t ∈ T. (12)

In the bilevel model above, the leader seeks the optimal protection strategy to minimize

the function F (1), which represents the weighted sum of demand that cannot be served

after interdiction, over the planning horizon. Constraint (2) represents the budget limit:

the amount of resources utilized up to period t for nodes and arcs protection cannot exceed

the available cumulative budget qt. Constraints (3) and (4) are the binary requirements for

the protection variables. The lower level program (5)-(12) is the interdiction model. The

follower seeks the attack strategy that maximizes the overall amount of unserved demand

(5). Constraints (6) state that a node cannot be disrupted at period t, if it is protected in

the time window {1, ..., t}. Similarly, constraints (7) state that an arc cannot be disrupted

at period t, if it is protected in the time window {1, ..., t}. Constraints (8) set a limit on the

interdiction resources available in each time period. Constraints (9) state that the demand

between s and d is unserved in period t (Zsdt = 1), only if all the acceptable paths connecting

the two nodes are disrupted at period t. This occurs if at least one node or arc on each

path is disabled. Finally, constraints (10)-(12) enforce binary restrictions on the lower level

variables.

4 Solution methodology

Multi-level models are generally very difficult to solve. Hansen et al. (1992) proved that even

the simplest bilevel models, the ones with continuous variables on every level, are strongly

NP-hard. Several solution approaches have been studied in the literature, including both

heuristic techniques and exact methods. Examples of heuristic approaches can be found in

Aksen and Aras (2013), Aksen et al. (2013, 2014), Parvaresh et al. (2013). Exact meth-

ods can be broadly classified into reformulation, enumeration and decomposition methods

(Saharidis and Ierapetritou, 2009). Reformulation and enumeration techniques are usually
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only applicable to bilevel problems with linear lower level programs. A few exceptions to

this are the reformulation of the p-median interdiction problem with fortification (Scaparra

and Church, 2008b) and the implicit enumeration algorithm used to solve several protection-

interdiction problems (Cappanera and Scaparra, 2011, Liberatore et al., 2012). In general,

the most effective methods for tackling problems with discrete variables in both levels are

decomposition methods. These directly exploit the decomposable structure of the model and

solve a series of smaller sub-problems to find an overall optimal solution.

In this paper, we present two different decomposition approaches for DNP. The first

is based on the use of Benders cuts. Benders decomposition has been widely used in the

literature to deal with large-scale MILP problems (Benders, 1962). More recently, the use

of Benders-like decomposition algorithms has been extended to multi-level programs (Israeli

and Wood, 2002, O’Hanley and Church, 2011, Losada et al., 2012b). The second approach

utilizes special cutting planes known as Super Valid Inequalities (SVIs). An SVI is a cutting

plane that reduces the feasible region without excluding any optimal solution unless the

incumbent solution is itself optimal. SVIs were initially introduced by Israeli and Wood

(2002) to speed up a Benders decomposition approach. SVIs were also used explicitly as a

stand alone solution method in O’Hanley and Church (2011) and in Losada et al. (2012b).

In all our decomposition approaches, DNP is split into two connected subproblems referred

to as the Restricted Master Problem (RMP) and the SubProblem (SP). These subproblems are

solved alternatively until the algorithms converge to an optimal solution. The RMP entails

decisions about what to protect to thwart the most disruptive interdiction plans identified

in previous iterations. At each iteration, the most disruptive interdiction plan in response

to a given protection strategy is identified by solving SP, which is the interdiction problem

(5)-(12) with the protection variables fixed to the feasible values identified by the current

RMP’s solution. The solution to the SP is then used to generate either Benders or SVIs cuts

to be appended to the RMP and the process is iterated.

The description of the decomposition methods uses the following additional notation.

w : iterations index.

Ŷw = [Ŷn
w, Ŷ

a
w] : RMP’s solution at iteration w. This vector holds the values of the protec-

tion variables Y n
it and Y a

jt.

ẐwX̂w : SP’s optimal response plan given protection strategy Ŷw. This vector holds the

values of the variables Zsdt, X
n
it, and Xa

jt.

Ẑw : sub-vector of ẐwX̂w holding the variables Zsdt.

X̂w = [X̂n
w, X̂

a
w] : sub-vector of ẐwX̂w holding the variables Xn

it and Xa
jt.

Given a protection strategy Ŷw, the subproblem SP , which is the same for both the ap-
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proaches, is simply:[
SP(Ŷw)

]
max
X

∑
t∈T

λt
∑
s

∑
d

fsdZsdt (13)

s.t. Xn
it ≤ 1−

t∑
u=1

Ŷ n
iuw ∀i ∈ N, ∀t ∈ T (14)

Xa
jt ≤ 1−

t∑
u=1

Ŷ a
juw ∀j ∈ A,∀t ∈ T (15)

(8)− (12)

By solving this model to optimality, we obtain a feasible solution, [Ŷw, ẐwX̂w], for DNP

and an upper bound to its objective. Additionally, the optimal response strategy X̂w can be

used to generate cutting planes for the RMP, as described in the following sections.

4.1 Benders Decomposition (BND-D)

The Benders decomposition algorithm uses the following additional notation.

artw : number of different elements along path r which are interdicted at time t in the

interdiction plan identified at iteration w.

Z̄w = {(s, d, t) ∈ N ×N × T | Zsdtw = 1}: indices of the disrupted flows at iteration w.

Qrtw : binary variable which takes value 1 if the interdiction of path r at time t in iteration

w is thwarted; 0 otherwise.

Qsdtw : binary variable which takes value 1 if the interdiction of the flow from s to d at time

t in iteration w is thwarted; 0 otherwise.

In BND-D, the RMP at iteration w̄ is a mixed-integer program defined as follows:

[RMP (w̄)]

min
Y

z (16)

s. t. (2)− (4)

z ≥
∑

(s,d,t)∈Z̄w

λt (fsd(1−Qsdtw)) ∀w ∈ [1, w̄] (17)

∑
i∈N(r)

X̂n
itw

t∑
u=1

Y n
iu +

∑
j∈A(r)

X̂a
jtw

t∑
u=1

Y a
ju ≥ artw Qrtw

∀s ∈ N, d ∈ N, t ∈ T : (s, d, t) ∈ Z̄w,∀r ∈ Nsd,∀w ∈ [1, w̄]

(18)
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∑
r∈Nsd

Qrtw ≥ Qsdtw ∀s ∈ N, d ∈ N, t ∈ T : (s, d, t) ∈ Z̄w,∀w ∈ [1, w̄] (19)

Qrtw ∈ {0, 1} ∀s ∈ N, d ∈ N, t ∈ T : (s, d, t) ∈ Z̄w,∀r ∈ Nsd, ∀w ∈ [1, w̄] (20)

Qsdtw ∈ {0, 1} ∀(s, d, t) ∈ Z̄w,∀w ∈ [1, w̄] (21)

z ∈ R+. (22)

The aim of the objective function (16) is to find the best protection strategy that thwarts

the interdiction plans identified in the previous iterations. Constraints (17) are called Ben-

ders cuts. They are lower bounds to the objective function z generated by all the interdiction

strategies found in the previous iterations. Constraints (18) represent the relationship be-

tween the variables Qrtw and the protection variables. Specifically, they state that a path r

connecting s and d can no longer be disrupted at time t by the interdiction strategy X̂w (i.e.,

Qrtw = 1), if all its interdicted arcs and nodes are protected either at time t or in some time

period prior to t. Constraints (19) state that the interdiction of the flow between s and d at

time t in iteration w can be thwarted (i.e., Qsdtw = 1) only if the protection strategy thwarts

the interdiction of at least one acceptable path r connecting s and d at time t. If at least one

path is not disrupted, then the objective function pushes the variable Qsdtw to take value 1

and the flow fsd at time t is no longer considered unserved in (17). Finally, constraints (20)

and (21) represent the binary requirements for the variables Qrtw and Qsdtw and constraint

(22) states that variable z is a non negative real.

The pseudo-code of BND-D is displayed below.

Algorithm 1 Bender decomposition

Set w = 1, Ŷw = 0, Yopt = 0, zsup =∞ and zinf = −∞
MAINSTEP
Solve SP(Ŷw) to obtain ẐwX̂w and the objective value ẑ
if ẑ < zsup then

zsup = ẑ and Yopt ← Ŷw

end if
if zsup − zinf = 0 then

goto TERMINATE
end if
w = w + 1
Solve RMP(w) to obtain Ŷw and zinf
if zsup − zinf > 0 then

goto MAINSTEP
end if
TERMINATE
Return(Yopt)
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The solution of the SP provides an upper bound to the DNP. Conversely, the solution of

the RMP is a lower bound for the DNP (the RMP is in fact a relaxation of DNP as it only

includes a subset of all possible interdiction plans). When the two sub-problems have the

same objective function value, the algorithm stops. It is easy to prove that BND-D converges

in a finite number of iterations. The resource constraints, in fact, guarantee that the number

of interdiction and protection strategies is finite.

4.2 SVI Decomposition (SVI-D)

The basic idea behind this approach is that, to thwart a worst-case interdiction and hence

lower the objective function value of the follower, the protection strategy must include at

least one element belonging to the optimal interdiction set (Church and Scaparra, 2007). Our

SVIs embed this idea by enforcing the protection of at least one of the arcs or one of the

nodes interdicted in the current follower response X̂w. More specifically, the SVI generated

at each iteration w is:

SV I
(
X̂w

)
:
∑
i

∑
t

X̂n
itw

t∑
u=1

Y n
iu +

∑
j

∑
t

X̂a
jtw

t∑
u=1

Y a
ju ≥ 1. (23)

This inequality states that at least one interdicted component in X̂w must be protected,

either at time t or in a previous time period.

At each iteration w, the RMP for SVI-D is simply a feasibility seeking problem, including

constraints (2) − (4) and all the SVIs generated up to the current iteration. If a feasible

solution to the RMP can be identified, SP is solved again with the new protection strategy

Ŷw as input and the process is repeated. The algorithm stops when in the master model

the protection resources are insufficient to thwart all the interdiction strategies discovered

in the previous iterations, and thus the RMP becomes infeasible. Considering that the

protection and interdiction resources are limited, the number of possible strategies is finite.

Consequently, the RMP will become infeasible after a finite number of iterations.

The fact that inequalities (23) are supervalid is proven in the following proposition.

Proposition. SV I(X̂w) is supervalid.

Proof. : Let [Ŷw, ẐwX̂w] be the feasible solution of DNP found at iteration w. If this

solution is optimal, then by definition inequality (23) is super-valid. If the solution is sub-

optimal, adding inequality (23) to the RMP problem will generate a new protection strategy

Ŷw+1 6= Ŷw. This strategy will in turn lead to a solution Ẑw+1X̂w+1 of the SP that is

different from the previous one because of constraints (14) and (15). Thus, for every w, the
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inequality is super-valid because it eliminates the incumbent solution, i.e.:

[Ŷw+1, Ẑw+1X̂w+1] 6= [Ŷw, ẐwX̂w]. 2

The main steps of the SVI-D algorithm are outlined below:

Algorithm 2 SVI-D

Set w = 1, Ŷw = 0, Yopt = 0, zopt =∞.
MAINSTEP
Solve SP(Ŷw) to obtain ẐwX̂w and the objective value ẑ
if ẑ < zopt then

zopt = ẑ and Yopt ← Ŷw.
end if
Add SV I(X̂w) to RMP .
w = w + 1
Solve RMP to obtain Ŷw.
if RMP is feasible then

goto MAINSTEP
end if
TERMINATE
Return(Yopt)

5 Results and Analysis

In this section, we investigate the computational efficiency of solving the dynamic network

protection problem using BND-D and SVI-D. Both algorithms were implemented in C and

run on a 64-bit machine with a quad-core 3.4GHz processor and 4GB of RAM. The Re-

stricted Master Problems and the SubProblems were solved using the IBM ILOG CPLEX

version 12.5 callable library. In our computational analysis, we set a time limit of 10, 000

seconds. In the algorithms’ implementation, we used specialized data structures to store and

retrieve information efficiently. Specifically, we observed that, given a protection strategy,

each SubProblem could be decomposed into |T | independent interdiction problems. Some of

these sub-problems recurred multiple times across different iterations. We therefore used a

hash table to store and retrieve their solutions efficiently. On some preliminary tests, this

expedient yielded a reduction in computing time as high as 80%.

The initial testing was performed on two sets of randomly generated problems. Specifi-

cally, we generated 5 undirected networks with 10 nodes and 15 arcs, and 5 undirected net-

works with 20 nodes and 25 arcs. Distances were chosen uniformly from the set {1, 2, ..., 6}.
The flow demand matrix was generated by drawing each value uniformly from {0, 1, ..., 100}.
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Each unit of flow can be interpreted as 10, 000 passengers. The costs of protecting / dis-

rupting a node (qni and pni ) were drawn uniformly among the values {2, 4, 6}. These three

values were chosen to model stations of different size (small, medium and large). We also

assumed paj = 1. This choice was driven by the observation that in real life disrupting an

arc is usually easier than disrupting a station. Tracks, in fact, are highly vulnerable because

of their length and the presence of accessible and easily attackable structures (overpasses,

bridges, tunnels). Just hitting one of these structures would impair the full link. On the

other hand, the complete protection of a track can be an expensive task. Therefore, the

values qaj were chosen uniformly from the set {1, 2, ..., 6}.
One of the assumptions of our model is that there is a limit to the number of arcs and

nodes that can be disrupted. This budget limit is introduced to model disruptions of different

magnitude. For example, a small interdiction budget indicates that the disruptive event only

affects a few small components of the network. Conversely, a large disruption can affect a

larger number of elements of the network and/or big assets. In our analysis, we consider three

disruption scenarios. The interdiction resources associated with each scenario are shown in

Table 1. Specifically, we assume that a small event is able to interdict only a small station or

two arcs, whereas a large event is able to completely disrupt a big station or a combination

of small components. The protection budget is assumed to be a percentage α of the total

amount of resources needed to protect the full network, denoted byB. Namely, q|T | = αB. We

consider values of α equal to 5% and 10%. The protection resources are spread in a 5-period

planning horizon. The time periods are all weighted equally (λ = [0.2, 0.2, 0.2, 0.2, 0.2]).

Table 1: Disruption scenarios

Size Resource units
Small 2

Medium 4
Large 6

The results for the two data sets are displayed in Table 2 and Table 3, respectively.
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Table 2: Computational comparison between BND-D and SVI-D for the 10-15-x networks

Network Disr units Prot Objective Computing time (sec) Prot Prot Disr Disr
name per period budget value BND-D SVI-D arcs nodes arcs nodes

10-15-1 2 5% 6886 0.52 0.01 1 0 6 2
2 10% 6414 0.75 0.05 1 1 8 1
4 5% 8513 0.59 0.05 1 1 18 1
4 10% 8179 8.01 0.89 2 1 20 0
6 5% 9992 0.64 0.03 1 1 9 5
6 10% 9516 7.39 0.70 1 3 22 2

10-15-2 2 5% 5336 0.61 0.04 1 1 6 2
2 10% 4884 4.26 0.36 2 1 8 1
4 5% 7782 0.94 0.09 2 1 16 2
4 10% 7449 66.79 2.02 4 1 16 2
6 5% 9126 1.77 0.41 2 1 26 2
6 10% 8829 > 10000 25.96 4 1 24 2

10-15-3 2 5% 5235 0.52 0.02 0 1 8 1
2 10% 4611 0.76 0.04 2 1 10 0
4 5% 7760 0.57 0.04 1 1 16 2
4 10% 7200 2.14 0.44 2 1 18 1
6 5% 9196 0.83 0.08 0 2 18 6
6 10% 8796 62.24 3.16 1 3 26 2

10-15-4 2 5% 5122 0.71 0.04 3 0 10 0
2 10% 4398 2.35 0.53 4 0 10 0
4 5% 7280 2.09 0.39 2 0 16 2
4 10% 6797 208.82 5.93 4 1 12 4
6 5% 8832 7.74 0.62 3 0 20 5
6 10% 8405 3479.83 33.82 4 1 16 6

10-15-5 2 5% 4642 0.52 0.02 1 0 10 0
2 10% 4270 0.83 0.08 1 1 8 1
4 5% 7270 0.74 0.05 1 1 14 3
4 10% 6892 12.47 0.61 2 2 18 1
6 5% 8811 1.43 0.43 1 2 22 4
6 10% 8385 144.07 7.81 2 2 28 1

AVG 7226.93 138.65 2.82 1.87 1.07 15.30 2.03

For each network, disruption scenario and protection budget level, the tables show the

DNP’s objective function values, i.e., the worst-case disrupted flow over the planning horizon,

the computing times of the two algorithms, and the number of network elements protected

and disrupted in the optimal solutions. In these initial tests, the threshold for the path choice

was fixed to 1, i.e., only the shortest paths are considered acceptable.
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Table 3: Computational comparison between BND-D and SVI-D for the 20-25-x networks

Network Disr units Prot Objective Computing time (sec) Prot Prot Disr Disr
name per period budget value BND-D SVI-D arcs nodes arcs nodes

20-25-1 2 5% 21807 2.28 0.11 2 0 10 0
2 10% 19367 204.54 1.68 4 1 8 1
4 5% 32436 1.89 0.16 2 0 4 4
4 10% 31257 > 10000 11.43 3 2 12 2
6 5% 37113 16.75 0.73 3 0 10 5
6 10% 36580 > 10000 232.22 3 2 26 1

20-25-2 2 5% 22773 1.05 0.03 1 1 8 1
2 10% 20241 20.15 1.11 4 1 8 1
4 5% 31581 12.27 0.56 2 1 14 3
4 10% 29370 9430.88 32.80 4 2 12 4
6 5% 36833 41.37 2.56 1 2 12 9
6 10% 35242 > 10000 1965.73 4 2 24 3

20-25-3 2 5% 24297 1.10 0.03 1 1 8 1
2 10% 21534 14.03 0.88 3 1 8 1
4 5% 32058 2.15 0.22 1 1 16 2
4 10% 30800 487.11 8.39 5 1 14 3
6 5% 37155 2.84 0.65 2 1 20 5
6 10% 35646 > 10000 128.42 5 1 18 6

20-25-4 2 5% 27102 1.15 0.06 1 1 8 1
2 10% 24255 21.37 0.64 3 1 8 1
4 5% 34934 2.06 0.17 1 1 18 1
4 10% 33105 853.55 9.52 4 1 12 4
6 5% 39368 5.87 0.96 2 1 18 6
6 10% 37842 > 10000 393.51 3 1 20 5

20-25-5 2 5% 27791 829.00 0.04 1 1 8 1
2 10% 26065 43.73 1.45 4 2 6 2
4 5% 36440 15.19 0.48 2 1 12 4
4 10% 34949 6093.55 11.99 4 2 8 6
6 5% 40817 82.36 1.82 1 2 24 3
6 10% 39344 > 10000 3444.29 4 2 24 3

AVG 31270.07 757.76 208.42 2.67 1.20 13.27 2.97

The tables clearly show that SVI-D outperforms BND-D in every case. This is mostly due

to the fact the RMP in the SVI-D approach does not have an objective function and, upon

solving it, one stops as soon as a feasible solution is identified. As a consequence, the RMPs

can be solved very quickly. The drawback is that without an objective to drive the protection

strategy selection, the algorithm takes a considerable number of iterations before converging

to an optimal solution. Conversely, finding a solution to each RMP in the BND-D algorithm

is quite time-consuming. Although this algorithm converges in a much smaller number of

iterations compared to SVI-D, this is not sufficient to offset the greater difficulty of solving

each RMP and its overall computing time is considerably higher.

The impact of the size of the network is evident by comparing the two tables. Nonetheless,
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the high variability in the computing time suggests that the complexity of the problem

depends on a combination of several factors, including the network topology. For instance,

networks 20-25-4 and 20-25-5, although of equal size, have very different computing times.

In Table 4, we report some additional results for the largest data set using different path

thresholds. The threshold value determines the number of acceptable paths, which in turn

affects the size of the problems in terms of number of variables and constraints. Table 4

shows the impact of three different threshold values on the number of available paths and the

computing time. A threshold value equal to 1.5 indicates that the users are willing to accept

a 50% increase on their normal travel time, before switching to other transportation services

or abandoning the trip. Similarly, a value equal to 2 indicates that a travel delay up to 100%

is considered acceptable. Given the superiority of SVI-D, the computing times are reported

for this algorithm only. In the analysis, we consider two protection levels (α = 5%, 10%) and

three disruption scenarios (2, 4, and 6 disruption units).

Table 4: Computational results for different path threshold values

Network Threshold Paths Computing time (sec.)
Protection level (α) 5% 10%

Disruption scenario (pt) 2 4 6 2 4 6
20-25-1 1 172 0.11 0.16 0.73 1.68 11.43 232.22

1.5 247 0.19 1.44 4.00 1.64 198.13 1684.57
2 327 0.18 4.66 6.29 3.86 114.65 1002.78

20-25-2 1 166 0.03 0.56 2.56 1.11 32.80 1965.73
1.5 229 0.07 0.60 3.95 1.35 25.40 2730.99
2 299 0.11 0.99 4.60 2.78 31.22 2469.20

20-25-3 1 172 0.03 0.22 0.65 0.86 8.39 128.42
1.5 220 0.04 0.97 1.23 0.74 28.25 543.99
2 317 0.04 1.04 4.02 1.75 41.19 1089.08

20-25-4 1 170 0.06 0.17 0.96 0.64 9.52 393.51
1.5 245 0.06 0.77 1.10 0.95 26.88 395.96
2 323 0.13 1.55 3.08 1.81 87.27 2587.95

20-25-5 1 175 0.04 0.48 1.82 1.45 11.99 3444.29
1.5 269 0.11 0.78 1.71 1.59 14.27 4183.99
2 331 0.26 0.75 6.18 1.91 24.76 1224.40

Although in most of the cases an increase in the path threshold value results in an

increase in computing time, there are some exceptions to this general trend, especially for

large instances (α = 10% and pt = 6). For these instances, the most critical threshold

value seems to be 1.5. As previously noted, these results point out that the performance of

the algorithms are influenced by an interaction of different elements, such as the protection

and disruption budgets, the network topological structure and the flow demand matrix. In
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general, increasing the number of acceptable paths increases the number of elements that

must be targeted to disrupt a flow. As a consequence, the interdiction problems may become

more difficult to solve. However, an increment in the path threshold value may also render

some flows too difficult or even impossible to disrupt, thus reducing the number of possible

interdiction plans and, consequently, the overall solution time.

To highlight how the path threshold affects the interdiction and protection optimal plans,

in Fig. 1 we compare the number of arcs and nodes protected and interdicted over the

planning horizon.

Figure 1: Impact of the path threshold on the number of protected/interdicted elements
(pt = 6,∀t, α = 10%).
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Changing the threshold value almost always results in different protection and interdiction

plans. In some cases the changes are small, in others can be significant. For example, consider

network 20-25-1. When the threshold is increased from 1 to 2, the number of interdicted arcs

drops from 26 to 10, whereas the number of nodes increases from 1 to 8. This indicates that

the interdiction plans are significantly different.

In summary, this analysis shows that changes to the path threshold parameter can have

significant effects on both the problem complexity and the optimal solutions. Consequently,

modeling users’ behavior accurately is a critical issue when solving this type of protection

models for service systems.

6 Case study analysis

In this section, we test the efficiency of the decomposition approaches and analyze the results

using a case study which represent the railway network of Kent (UK). The strategic position

of this county makes the case study particularly interesting. Kent has a nominal border

with France and, therefore, intercepts all the passenger flow from and to France. Although

most of the traffic flow is represented by London commuters, Kent’s railway has also a

considerable traffic of tourists, attracted by historical places like Canterbury and Rochester.

The overall network comprises 18 nodes, corresponding to cities and towns of the region,

and 22 undirected arcs. The actual railway network is more complex, having more nodes

and arcs. We simplified it by aggregating neighbouring stations and the corresponding flow

generated/attracted by them. A graphic representation of the network is showed in Fig. 2.

Figure 2: Railway network in Kent (UK).
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In the absence of real flow data, we generated the flow matrix as a function of the dimen-

sion of the connected towns, and the frequency and capacity of the trains travelling on the

network. As in the computational result section, we assumed that disrupting an arc requires

one unit of resources (paj = 1). We also used the same assumption made for the protec-

tion/disruption of nodes: we divided the stations into three groups according to their annual

passenger usage (Table 5). For example, Battle which is a small touristic town with less than

half a million annual passengers, needs two units to be disrupted/protected. Differently,

Ashford, which is a town of considerable size with more than 2 million annual passengers,

requires six units. The number of protection units, qaj , needed to fully protect an arc depends

on the number of tunnels and bridges that can be found on that arc. These numbers are

displayed along the arcs in Fig. 2. The disruption scenarios are the same as the ones used

in the previous section (see Table 1).

Table 5: Resources needed to disrupt/protect a node

Node dimension Disr/Prot resources
Small (annual passengers < 0.5 M) 2
Medium (0.5 M ≤ annual passengers < 1.5 M) 4
Big (annual passengers ≥ 1.5 M) 6

To compute the acceptable paths, we choose a threshold value equal to 1.5 (i.e., increases

up to 50% of the normal travel time are considered acceptable). We focus on a 5-period

planning horizon. In our initial investigation each period is weighted equally.

6.1 Impact of protection investments

In this section, we analyse the impact that different levels of protection resources have on

the amount of flow loss, for different disruption scenarios.

Table 6: Percentage amount of flow loss for different disruption scenarios and protection budgets.

Scenario No protection 5% 6% 7% 8% 9% 10%
small 27.37% 25.38% 24.48% 24.48% 23.97% 23.21% 22.34%

medium 34.50% 34.11% 32.92% 32.65% 32.65% 31.51% 31.12%
large 41.24% 38.18% 37.93% 36.50% 36.23% 35.69% 34.77%

For each disruption scenario and protection budget level, Table 6 displays the worst-case

percentage flow loss when the optimal protection strategy for that scenario is implemented.

The results show that even a small disruption can result in a loss of traffic flow as high as

27.37% of the total traffic, if no protection is carried out. This suggests that the network under
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study is highly vulnerable: even small, but possibly frequent, disruptive events can affect a

significant portion of the flow. Obviously, the impact of disruption is more pronounced for

medium and large disruption scenarios, with a flow loss of 34.50% and 41.24%, respectively.

Investing in protection measures brings notable benefits. In particular, with a protection

investment equal to 10%, the worst-case percentage flow loss can be reduced by about 18%,

10% and 16% in the three scenarios.

Fig. 3 displays the marginal percentage decrease in flow loss, for each percent unit

increment in protection resources. This graph provides in depth information on how each

budget increment affects potential system losses. This analysis is useful to highlight the

trade-off between protection expenditures and flow loss reductions in case of disruption. As

an example, if small disruptions are considered, a 5% investment results in a worst-case

flow loss reduction of about 7% (first segment of the first bar in the chart). If protection

investments can be increased to 10%, the benefit is more than doubled with an overall flow

loss reduction of about 18%. The graph also highlights possible investment inefficiencies. For

example, for medium disruptive scenarios (second bar), increasing the budget form 7% to

8% has no impact on the worst-case flow loss, to denote that this added budget, although

optimally allocated, is insufficient to thwart any additional interdiction plan.

Figure 3: Marginal percentage decrease in flow loss due to unit increments of the protection budget.
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6.2 Uncertainty of disruption events

One of the main issues involved in infrastructure protection planning is the intrinsic uncer-

tainty of the disruption events. It is difficult and sometimes impossible to forecast when a

disruption will happen and what its magnitude will be. The aim of the protection planner

is to make the network as robust as possible, which means identifying a strategy that works

well in all the possible scenarios. To this end, we consider how the optimal solution found for

a given scenario, works if a different scenario occurs. The analysis is performed considering

five equally weighted time periods and a protection budget equal to 10% of the resources

needed to protect the full network. The results are shown in Table 7.

Table 7: Cross-comparison of different optimal protection plans. Relative percentage flow loss
increase.

Actual scenario MAX AVG
Supposed scenario small medium large

small 0% 4.3% 8.0% 8.0% 4.1%
medium 13.8% 0% 14.4% 14.4% 9.4%

large 12.7% 5.6% 0% 12.7% 6.1%

The table shows the percentage increase in unserved flow when an optimal strategy,

obtained with a fixed scenario (supposed scenario), is used in a different scenario (actual

scenario). The table also shows the maximum and the average increase across all different

scenarios. Both solutions obtained for medium and large disruptions can be highly sub-

optimal if a small disruption takes place, resulting in a flow loss increase of 13.8% and 12.7%,

respectively. The best solution, in terms of both maximum and average values, is the one

obtained for small disruptions. This seems to indicate that planning for a small disruption

is overall a more robust strategy for this railway network. Obviously, a thorough analysis of

this issue would require the development of more sophisticated optimization models, which

account for the probability of occurrence of different scenarios and explicitly incorporate

robustness measures (Snyder and Daskin, 2006).

6.3 Dynamic investments

When dynamic investments are considered, a key questions is whether to opt for a protection

strategy which renders the network as robust as possible at the end of the planning horizon,

or for a strategy which guarantees high levels of protection as soon as possible (although

this may decrease the overall efficiency of the final protection plan). In this subsection,

we investigate how the protection strategies change when the time periods are weighted

differently. Note that the weight λt associated with the time periods in the model objective
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has some similarity with the discount parameter used in economics, in that it can be used

to discount future losses. However, in economics, future values are usually discounted more

heavily. In our model, instead, the weights vary and higher values may be associated with

the last time period if the ultimate objective is to achieve maximum protection effectiveness

at the end of the planning horizon.

In our analysis, we consider three different cases:

− CASE 1: λ = [0.8, 0.05, 0.05, 0.05, 0.05]. Here the aim of the protection planner is to

obtain a good level of protection from the very first time period.

− CASE 2: λ = [0.2, 0.2, 0.2, 0.2, 0.2]. Here all the periods are equally weighted.

− CASE 3: λ = [0.05, 0.05, 0.05, 0.05, 0.8]. Here the aim of the protection planner is to

maximise the safety level achieved when the protection strategy is fully implemented.

The protection budget used in this analysis is equal to 10% of the budget needed to protect

all the assets in the network.

Table 8: Impact of the time weights on the worst-case percentage flow loss.

CASE1 CASE2 CASE3
Scenario TL IL FL TL IL FL TL IL FL

Small 22.34% 26.40% 17.76% 22.34% 26.40% 17.76% 22.21% 27.01% 16.55%
Medium 31.12% 36.01% 28.10% 31.12% 36.01% 28.10% 31.51% 36.01% 27.86%

Large 34.77% 39.78% 30.90% 34.77% 39.78% 30.90% 34.77% 39.78% 30.90%

Table 8 has three columns for each case. The first one represents the total worst-case

percentage flow loss over all the time periods (TL). The second represents the worst-case

percentage flow loss in the initial time period (IL). The third represents the worst-case per-

centage flow loss in the final period (FL). This gives an indication of the protection level

reached by the network at the end of the planning horizon. The analysis is done for three

different disruption scenarios. Interestingly, the optimal protection strategy identified for

large disruptions is the same, independently on the weights used in the objective function.

Conversely, the other two scenarios present differences in the optimal protection strategies

when more importance is given to the last time period (the first two cases are still equal). For

small disruptions, giving more importance to the last period results in a more resilient final

network, with a drop of the worst-case flow loss from 17.76% to 16.55%. Also the total flow

loss slightly reduces from 22.34% to 22.21%. This indicates that aiming for the safest possible

network after 5 years also results in a more resilient network during the transitory periods

in which protections are implemented. For medium disruptions, the strategy to obtain a
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good level of protection in the last period results in higher losses of traffic (from 31.12% to

31.51%) throughout the planning horizon. Overall, for this case study, the weights given to

the different time periods do not seem to have a massive impact on the protection strategies

and on the network resiliency achieved at the end of the planning horizon.

6.4 Solution analysis

In this section we show a sample solution of the proposed model. In particular, Fig. 4

displays the assets chosen in the optimal protection plans, over the planning horizon, for

the three disruption scenarios. The protection budget is again equal to 10% of the budget

necessary to protect the entire network and all the time periods have equal weights.

It is clear that protecting the traffic to and from London is of strategic importance. In

fact, both the arcs connected to Swanley and Dartford are chosen for protection. Also some

arcs connected to Maidstone and Ashford are protected. These towns are among the most

populated in Kent and therefore generate and attract high volumes of traffic. It is also

interesting to notice that two relatively small stations like Otford and Strood are protected.

This is a consequence of their strategic position. They intercept the traffic to and from

London and are also directly connected to Maidstone. The main difference between the three

graphs is that when the extent of a possible disruption increases (Fig. 4c), more stations can

be disrupted. Consequently, more stations appear in the optimal protection strategy.

Finally, Fig. 5 shows the network components involved in a worst case disruption, after

the implementation of the optimal protection strategies displayed in Fig. 4. The interdiction

strategies follow a pattern similar to the one identified in the protection plans. The affected

components are, in fact, on the paths to and from London (link connected to Ebbsfleet), and

on the paths to big or touristic stations (Maidstone, Ashford, Canterbury and Hastings).

Table 9 provides the details of how the optimal protection strategies are implemented over

the planning horizon and, for each time period, displays the worst case interdictions. It can

be noticed that the three protection plans share several targets to protect. Nonetheless the

periods in which these targets are protected are usually different. Interestingly, in the second

time period no protection is implemented for the small disruption scenario. This is because

the resources available in this time period are saved to protect a larger asset (Maidstone-

Otford link) in the successive period. This table highlights how, in a real protection planning

situation, not only it is critical to choose what to protect but also when to protect the different

assets.
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(a) Small disruption.

(b) Medium disruption.

(c) Large disruption.

Figure 4: Optimal protection plans for different disruption scenarios.
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(a) Small disruption.

(b) Medium disruption.

(c) Large disruption.

Figure 5: Post-protection worst case losses in different disruption scenarios.
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Table 9: Optimal protection plans and worst case losses over the planning horizon.

PROTECTIONS INTERDICTIONS
Scenario T Arcs Nodes Arcs Nodes

0 Dartford-Strood Ashford-Ebbsfleet
Maidstone-Strood

1 Maidstone-Strood Ashford-Ebbslfeet
Otford-Swanley Maidstone-Otford

SMALL 2 Ashford-Ebbslfeet
Maidstone-Otford

3 Maidstone-Otford Ashford-Ebbsfleet
Rochester-Strood

4 Rochester-Strood Ashford-Maidstone
Otford-Sevenoaks

0 Dartford-Strood Ashford-Ebbslfeet
Maidstone-Strood
Otford-Swanley

Rochester-Strood
1 Maidstone-Strood Ashford-Ebbslfeet Otford

Rochester-Strood Ashford-Maidstone
MEDIUM 2 Ashford-Maidstone Ashford-Ebbsfleet

Ashford-Hastings
Maidstone-Otford
Otford-Swanley

3 Otford-Sevenoaks Ashford-Ebbsfleet
Ashford-Hastings
Maidstone-Otford
Otford-Swanley

4 Otford-Swanley Otford Ashford-Ebbsfleet
Ashford-Hastings
Maidstone-Otford

Sevenoaks-Tonbridge
0 Dartford-Strood Ashford-Ebbslfeet Strood

Otford-Swanley
1 Strood Ashford-Canterbury

Ashford-Ebbsfleet
Dover-Folkestone
Maidstone-Strood
Otford-Swanley

Rochester-Strood
2 Maidstone-Strood Ashford-Canterbury

Rochester-Strood Ashford-Ebbsfleet
Ashford-Maidstone

LARGE Dover-Folkestone
Maidstone-Otford
Otford-Sevenoaks

3 Otford-Swanley Ashford-Canterbury
Ashford-Ebbsfleet
Ashford-Maidstone
Dover-Folkestone
Maidstone-Otford
Otford-Sevenoaks

4 Otford-Sevenoaks Otford Ashford-Canterbury
Ashford-Ebbsfleet
Ashford-Maidstone
Dover-Folkestone
Maidstone-Otford

Sevenoaks-Tonbridge
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7 Conclusions and discussion

To protect critical infrastructure systems, it is necessary to distribute limited protection

resources in the most effective way. This paper introduced a bilevel fortification model to

identify the best allocation of protection resources against worst case scenario disruptions in

transportation networks. This model includes the important issue of considering dynamic

investments. Two decomposition methods to find optimal solutions to the model were pro-

posed and compared. The method based on super-valid inequalities clearly outperformed a

classic Benders decomposition approach in terms of computational efficiency. Our analysis

showed how the model results can be used to identify the optimal investment level to achieve

a desirable degree of protection, and highlighted possible trade-offs between protection ex-

penditures and traffic flow preserved in case of disruption. We applied the modeling approach

to the Kent railway network and showed the optimal protection strategies for different dis-

ruption scenarios (small, medium and large). For this particular case study, the weights given

to the different time periods in the objective of our dynamic model did not seem to have a

significant impact on the optimal protection plans.

Tests on some randomly generated problems indicated that a critical problem parameter

is the path threshold value. This parameter is used to model the users’ behavior and identify

the acceptable paths from a user perspective. A limitation of the current model is that each

origin-destination path is either acceptable or not. Given that the solutions identified by the

model are highly sensitive to the path threshold parameter, variations to this basic model

should be developed which better capture the users’ behavior. A logical extension would

be to consider that, following a disruption, the proportion of users taking a different path

depends on the extra travel time of this path, compared to the shortest one.

Other possible extensions of this work include the following. Other metrics, such as the

system costs, and the duration and frequency of a disruption, should be used to measure the

system’s performance. These aspects could be merged into a multi-objective model. Our

model only considers binary interdictions and protections. Future works may relax this as-

sumption by considering different levels of disruption/protection for each asset at different

costs. Protection models against random failures, as opposed to worst-case interdictions,

should also be developed and the protection strategies identified by the two modeling ap-

proaches should be compared. Finally, an interesting line of research would be to consider

scenario-indexed models including robustness measures. These models, which directly cap-

ture the intrinsic uncertainty of disruptive events, would be better suited to identify robust

solutions across different disruption scenarios.

In terms of methodology, adding a temporal component undoubtedly renders this type of
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bilevel protection problems significantly more difficult to solve than their static counterparts.

The proposed solution approaches can only be applied to small/medium networks, such as

the one used in the Kent case study. Solving larger instances will require developing more

sophisticated approaches, including heuristics and hybrid approaches.
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