137 research outputs found

    Electronic band structure and optical properties of boron arsenide

    Get PDF
    We compute the electronic band structure and optical properties of boron arsenide using the relativistic quasiparticle self-consistent GW approach, including electron-hole interactions through solution of the Bethe-Salpeter equation. We also calculate its electronic and optical properties using standard and hybrid density functional theory. We demonstrate that the inclusion of self-consistency and vertex corrections provides substantial improvement in the calculated band features, in particular, when comparing our results to previous calculations using the single-shot GW approach and various density functional theory (DFT) methods, from which a considerable scatter in the calculated indirect and direct band gaps has been observed. We find that BAs has an indirect gap of 1.674 eV and a direct gap of 3.990 eV, consistent with experiment and other comparable computational studies. Hybrid DFT reproduces the indirect gap well, but provides less accurate values for other band features, including spin-orbit splittings. Our computed Born effective charges and dielectric constants confirm the unusually covalent bonding characteristics of this III-V system

    Electron excess in alkaline earth sub-nitrides:2D electron gas or 3D electride?

    Get PDF
    Alkaline earth sub-nitrides were synthesised more than five decades ago, but their potential for high-performance electronics was only recently demonstrated [Lee et al., Nature, 2013]. Based on the formal valence of the elements, there is an intrinsic excess of electrons, which is unusual for a chemically stable compound. We report an electrostatic and electronic analysis of Ca2N, Sr2N and Ba2N, which reveals a highly anisotropic electronic band structure, with a subtle balance between localisation and delocalisation of excess electrons in between positively charged planes of [M2N]+. A deep potential well is found at empty crystallographic positions, which are occupied by anions in the structurally analogous ternary nitrides. A greater degree of delocalisation (conductivity) is predicted for heavier metals

    Intrinsic point defects and the n- and p-type dopability of the narrow gap semiconductors GaSb and InSb

    Get PDF
    The presence of defects in the narrow gap semiconductors GaSb and InSb affects their dopability and hence applicability for a range of optoelectronic applications. Here, we report hybrid density functional theory (DFT)-based calculations of the properties of intrinsic point defects in the two systems, including spin-orbit coupling effects, which influence strongly their band structures. With the hybrid DFT approach adopted, we obtain excellent agreement between our calculated band dispersions and structural, elastic, and vibrational properties and available measurements. We compute point defect formation energies in both systems, finding that antisite disorder tends to dominate, apart from in GaSb under certain conditions, where cation vacancies can form in significant concentrations. Calculated self-consistent Fermi energies and equilibrium carrier and defect concentrations confirm the intrinsic n- and p-type behavior of both materials under anion-rich and anion-poor conditions. Moreover, by computing the compensating defect concentrations due to the presence of ionized donors and acceptors, we explain the observed dopability of GaSb and InS

    Oxidation states and ionicity

    Get PDF
    The concepts of oxidation state and atomic charge are entangled in modern materials science. We distinguish between these quantities and consider their fundamental limitations and utility for understanding material properties. We discuss the nature of bonding between atoms and the techniques that have been developed for partitioning electron density. While formal oxidation states help us count electrons (in ions, bonds, lone pairs), variously defined atomic charges are usefully employed in the description of physical processes including dielectric response and electronic spectroscopies. Such partial charges are introduced as quantitative measures in simple mechanistic models of a more complex reality, and therefore may not be comparable or transferable. In contrast, oxidation states are defined to be universal, with deviations constituting exciting challenges as evidenced in mixed-valence compounds, electrides and highly correlated systems. This Perspective covers how these concepts have evolved in recent years, our current understanding and their significance

    Electron Counting in Solids: Oxidation States, Partial Charges, and Ionicity

    Get PDF
    The oxidation state of an element is a practically useful concept in chemistry. IUPAC defines it as “the charge an atom might be imagined to have when electrons are counted according to an agreed-upon set of rules”.(1) Once the composition of a compound is known, a trained chemist will immediately infer the oxidation states of its components, and in turn anticipate the structural, electronic, optical and magnetic properties of the material. This is a powerful heuristic tool

    Deep vs shallow nature of oxygen vacancies and consequent n -type carrier concentrations in transparent conducting oxides

    Get PDF
    The source of n -type conductivity in undoped transparent conducting oxides has been a topic of debate for several decades. The point defect of most interest in this respect is the oxygen vacancy, but there are many conflicting reports on the shallow versus deep nature of its related electronic states. Here, using a hybrid quantum mechanical/molecular mechanical embedded cluster approach, we have computed formation and ionization energies of oxygen vacancies in three representative transparent conducting oxides: In 2 O 3 , SnO 2 , and ZnO. We find that, in all three systems, oxygen vacancies form well-localized, compact donors. We demonstrate, however, that such compactness does not preclude the possibility of these states being shallow in nature, by considering the energetic balance between the vacancy binding electrons that are in localized orbitals or in effective-mass-like diffuse orbitals. Our results show that, thermodynamically, oxygen vacancies in bulk In 2 O 3 introduce states above the conduction band minimum that contribute significantly to the observed conductivity properties of undoped samples. For ZnO and SnO 2 , the states are deep, and our calculated ionization energies agree well with thermochemical and optical experiments. Our computed equilibrium defect and carrier concentrations, however, demonstrate that these deep states may nevertheless lead to significant intrinsic n -type conductivity under reducing conditions at elevated temperatures. Our study indicates the importance of oxygen vacancies in relation to intrinsic carrier concentrations not only in In 2 O 3 , but also in SnO 2 and ZnO

    Engineering Valence Band Dispersion for High Mobility p-Type Semiconductors

    Get PDF
    The paucity of high performance transparent p-type semiconductors has been a stumbling block for the electronics industry for decades, effectively hindering the route to efficient transparent devices based on p–n junctions. Cu-based oxides and subsequently Cu-based oxychalcogenides have been heavily studied as affordable, earth-abundant p-type transparent semiconductors, where the mixing of the Cu 3d states with the chalcogenide 2p states at the top of the valence band encourages increased valence band dispersion. In this article, we extend this mixing concept further, by utilizing quantum chemistry techniques to investigate ternary copper phosphides as potential high mobility p-type materials. We use hybrid density functional theory to examine a family of phosphides, namely, MCuP (M = Mg, Ca, Sr, Ba) which all possess extremely disperse valence band maxima, comparable to the dispersion of excellent industry standard n-type transparent conducting oxides. As a proof of concept, we synthesized and characterized powders of CaCuP, showing that they display high levels of p-type conductivity, without any external acceptor dopant. Lastly, we discuss the role of Cu-coordination in promoting valence band dispersion and provide design principles for producing degenerate p-type materials

    Dynamical response and instability in ceria under lattice expansion

    Get PDF
    We present results of density functional theory calculations on the phonon dispersion and elastic constants of bulk ceria (CeO2) as a function of positive and negative isotropic strain, which could be induced thermally or by cationic doping. We find that, as the lattice is expanded, there is a significant softening of the B1u mode at the X point. This mode consists of motions of oxygens in the [001] direction. At a strain of 1.6%, corresponding to a temperature of 1600 K, the B1u and Eu modes at the X point cross, with an associated high, narrow peak in the phonon density of states appearing. We infer that this crossing indicates a coupling of the modes, leading to a transition to a superionic phase, where conductivity occurs in the [001] direction, mediated by anion interstitial site occupation. As the lattice is expanded further, the B1u mode continues to soften, becoming imaginary at a strain of 3.4%, corresponding to a temperature of 2500 K. Following the imaginary mode would result in a cubic to tetragonal phase transition, similar to those known to occur with reducing temperature in zirconia (ZrO2) and hafnia (HfO2). Our calculated elastic constants, however, indicate that the structure remains mechanically stable, even at this level of expansion. As confirmed by our semiclassical free energy calculations, the cubic phase of ceria remains the most stable, while the imaginary mode indicates a change to a thermally disordered cubic phase, with the majority of disorder occurring on the anion sublattice. Our results explain the high temperature ionic conductivity in ceria and other fluorite-structured materials in terms of the intrinsic lattice dynamics, and give insight to the stability and anionic disorder at elevated temperatures

    Dispelling the Myth of Passivated Codoping in TiO2

    Get PDF
    Modification of TiO2 to increase its visible light activity and promote higher performance photocatalytic ability has become a key research goal for materials scientists in the past 2 decades. One of the most popular approaches proposed this as “passivated codoping”, whereby an equal number of donor and acceptor dopants are introduced into the lattice, producing a charge neutral system with a reduced band gap. Using the archetypal codoping pairs of [Nb + N]- and [Ta + N]-doped anatase, we demonstrate using hybrid density functional theory that passivated codoping is not achievable in TiO2. Our results indicate that the natural defect chemistry of the host system (in this case n-type anatase TiO2) is dominant, and so concentration parity of dopant types is not achievable under any thermodynamic growth conditions. The implications of passivated codoping for band gap manipulation in general are discussed
    • …
    corecore