39 research outputs found

    Quantifying abundance and distribution of native and invasive oysters in an urbanised estuary

    Full text link
    Ā© 2016 The Author(s). Journal compilation, 2016 REABIC. Human activities have modified the chemical, physical and biological attributes of many of the worldā€™s estuaries. Natural foreshores have been replaced by artificial habitats and non-indigenous species have been introduced by shipping, aquaculture, and as ornamental pets. In south east Australia, the native Sydney rock oyster Saccostrea glomerata is threatened by pollution, disease and competition from the invasive Pacific oyster Crassostrea gigas. This study assessed the abundance (as number m-2), size, and distribution of both invasive and native oyster species at 32 sites in the heavily urbanised Port Jackson Estuary, Australia. We tested the hypotheses that there would be: (1) a difference in the proportion of C. gigas and S. glomerata among locations; (2) a greater proportion of C. gigas on artificial compared to natural substrates; (3) a greater numbers of all oysters, with differing size characteristics, on artificial compared to natural substrates; and (4) that the abundance and size of all oysters would vary among locations along an environmental gradient. Environmental variables included distance from the estuary mouth and salinity. We found the abundance and size of all oysters differed among locations; smaller oysters occurred at greater abundances near the mouth of the estuary. Abundance was also higher on artificial, than on natural substrate. Habitat type, however, had no effect on which species of oyster was present. In contrast, distance from the estuary mouth strongly influenced the relative proportion of the two species. The invasive C. gigas comprised 16% of the oysters sampled, and up to 85% at some of the upper estuary sites. As predicted, C. gigas was more abundant at locations in the bay ends and upper channel of the estuary; it was also larger in size than the native S. glomerata. This is the first assessment of oyster distribution in Port Jackson and provides a solid base for monitoring changes in the estuarine distribution of a globally invasive pest

    Mine waste and acute warming induce energetic stress in the deep-sea sponge Geodia atlantica and coral Primnoa resedeaformis; results from a mesocosm study

    Get PDF
    There is the potential for climate change to interact with pollution in all of the Earth's oceans. In the fjords of Norway, mine tailings are released into fjords generating suspended sediment plumes that impact deep-sea ecosystems. These same deep-sea ecosystems are expected to undergo periodic warming as climate change increases the frequency of down-welling events in fjords. It remains unknown how a polluted deep-sea ecosystem would respond to down-welling because multiple stressors will often interact in unpredictable ways. Here, we exposed two deep-sea foundation species; the gorgonian coral Primnoa resedaeformis and the demosponge Geodia atlantica to suspended sediment (10 mg Lāˆ’1) and acute warming (+5Ā°C) in a factorial mesocosm experiment for 40 days. Physiology (respiration, nutrient flux) and cellular responses (lysosomal cell stability) were measured for both the coral and sponge. Exposure to elevated suspended sediment reduced metabolism, supressed silicate uptake and induced cellular instability of the sponge G. atlantica. However, combining sediment with warming caused G. atlantica to respire and excrete nitrogen at a greater rate. For the coral P. resedaeformis, suspended sediments reduced O:N ratios after 40 days, however, warming had a greater effect on P. resedaeformis physiology compared to sediment. Warming increased respiration, nitrogen excretion, and cellular instability which resulted in lower O:N ratios. We argue that suspended sediment and warming can act alone and also interact to cause significant harm to deep-sea biota, however responses are likely to be species-specific. Warming and pollution could interact in the deep-sea to cause mortality to the coral P. resedaeformis and to a lesser extent, the sponge G. atlantica. As foundation species, reducing the abundance of deep sea corals and sponges would likely impact the ecosystems they support.publishedVersio

    Surviving the Anthropocene: the resilience of marine animals to climate change

    Get PDF
    If marine organisms are to persist through the Anthropocene, they will need to be resilient, but what is resilience, and can resilience of marine organisms build within a single lifetime or over generations? The aim of this review is to evaluate the resilience capacity of marine animals in a time of unprecedented global climate change. Resilience is the capacity of an ecosystem, society, or organism to recover from stress. Marine organisms can build resilience to climate change through phenotypic plasticity or adaptation. Phenotypic plasticity involves phenotypic changes in physiology, morphology, or behaviour which improve the response of an organism in a new environment without altering their genotype. Adaptation is an evolutionary longer process, occurring over many generations and involves the selection of tolerant genotypes which shift the average phenotype within a population towards the fitness peak. Research on resilience of marine organisms has concentrated on responses to specific species and single climate change stressors. It is unknown whether phenotypic plasticity and adaptation of marine organisms including molluscs, echinoderms, polychaetes, crustaceans, corals, and fish will be rapid enough for the pace of climate change

    A Traitā€Based Framework for Assessing the Vulnerability of Marine Species to Human Impacts

    Get PDF
    Marine species and ecosystems are widely affected by anthropogenic stressors, ranging from pollution and fishing to climate change. Comprehensive assessments of how species and ecosystems are impacted by anthropogenic stressors are critical for guiding conservation and management investments. Previous global risk or vulnerability assessments have focused on marine habitats, or on limited taxa or specific regions. However, information about the susceptibility of marine species across a range of taxa to different stressors everywhere is required to predict how marine biodiversity will respond to human pressures. We present a novel framework that uses life-history traits to assess speciesā€™ vulnerability to a stressor, which we compare across more than 44,000 species from 12 taxonomic groups (classes). Using expert elicitation and literature review, we assessed every combination of each of 42 traits and 22 anthropogenic stressors to calculate each speciesā€™ or representative species groupā€™s sensitivity and adaptive capacity to stressors, and then used these assessments to derive their overall relative vulnerability. The stressors with the greatest potential impact were related to biomass removal (e.g., fisheries), pollution, and climate change. The taxa with the highest vulnerabilities across the range of stressors were mollusks, corals, and echinoderms, while elasmobranchs had the highest vulnerability to fishing-related stressors. Traits likely to confer vulnerability to climate change stressors were related to the presence of calcium carbonate structures, and whether a species exists across the interface of marine, terrestrial, and atmospheric realms. Traits likely to confer vulnerability to pollution stressors were related to planktonic state, organism size, and respiration. Such a replicable, broadly applicable method is useful for informing ocean conservation and management decisions at a range of scales, and the framework is amenable to further testing and improvement. Our framework for assessing the vulnerability of marine species is the first critical step toward generating cumulative human impact maps based on comprehensive assessments of species, rather than habitats

    The resilience of bivalves to environmental stress

    No full text
    Human activities and climate change are causing irreversible changes in almost all marine environments. In these changing environments, it is the resilience of organisms that may decide whether they succeed or fail. Marine bivalves are habitat forming organisms, the species they support are intrinsically linked to their distribution. This thesis sought to determine whether habitat forming bivalves will be resilient to stressors at a magnitude predicted for the next 100 years. To answer this overarching question, experiments were done to test hypotheses on how stressors will interact to affect bivalves. Oysters currently exist in Sydney Harbour despite a multiple stressor environment including the influence of anthropogenic pollution and construction. These stressors were found to be causing biological impacts at a local scale and influencing patterns of distribution of both native and invasive oysters in Sydney Harbour. How current and future stressors will interact to impact bivalve populations remains unknown. Climate change is predicted too warm and acidify the oceans, which will potentially exacerbate existing environmental stressors. Separate manipulative experiments found that both pollution from anthropogenic sources, and emersion of oysters at low tide will interact with climate change to have synergistically negative effects on the physiology and reproduction of oysters. Intertidal organisms such as oysters are predicted to be resilient. Deep sea organisms are, however, predicted to have a low capacity for resilience. Manipulative experiments on the deep sea bivalve Acesta excavata found that pollution and climate change will interact to cause negative effects on the physiology and energy budget of A. excavata. These results represent important findings into how oyster and other bivalve populations may behave in a future environment that is heavily influenced by anthropogenic practices

    Acclimation in intertidal animals reduces potential pathogen load and increases survival following a heatwave

    No full text
    Summary: Intertidal animals can experience intense heat during a heatwave, leading to mortality. The causes of death for intertidal animals following heatwaves have often been attributed to a breakdown in physiological processes. This, however, contrasts with research in other animals where heatwave mortality is attributed to existing or opportunistic diseases. We acclimated intertidal oysters to four treatment levels, including an antibiotic treatment, and then exposed all treatments to a 50Ā°C heatwave for 2Ā h, replicating what can be experienced on Australian shorelines. We found that both acclimation and antibiotics increased survival and reduced the presence of potential pathogens. Non-acclimated oysters had a significant shift in their microbiome, with increasing abundances of bacteria from the Vibrio genera, including known potential pathogens. Our results demonstrate that bacterial infection plays a pivotal role in post-heatwave mortality. We anticipate these findings to inform the management of aquaculture and intertidal habitats as climate change intensifies

    Microplastics detected in haemolymph of the Sydney rock oyster Saccostrea glomerata

    No full text
    Plastic waste is ubiquitous in marine environments. Despite the sheer volume of plastic waste, it remains relatively unknown how marine invertebrates will interact with microplastics (plastic <1 mm). Microplastics (<2 Ī¼m) were ingested by the economically and ecologically significant Sydney rock oyster Saccostrea glomerata and translocated to the haemolymph, perhaps via phagocytosis. The presence of microplastics in the haemolymph indicates that filter feeding S. glomerata can ingest and accumulate microplastics which are prevalent in the environment. This research shows microplastics can enter marine molluscs and highlights the need to monitor microplastics in the marine environment and aquaculture to safeguard the seafood industry

    Mine Waste and Acute Warming Induce Energetic Stress in the Deep-Sea Sponge Geodia atlantica and Coral Primnoa resedeaformis; Results From a Mesocosm Study

    No full text
    There is the potential for climate change to interact with pollution in all of the Earth's oceans. In the fjords of Norway, mine tailings are released into fjords generating suspended sediment plumes that impact deep-sea ecosystems. These same deep-sea ecosystems are expected to undergo periodic warming as climate change increases the frequency of down-welling events in fjords. It remains unknown how a polluted deep-sea ecosystem would respond to down-welling because multiple stressors will often interact in unpredictable ways. Here, we exposed two deep-sea foundation species; the gorgonian coral Primnoa resedaeformis and the demosponge Geodia atlantica to suspended sediment (10 mg Lāˆ’1) and acute warming (+5Ā°C) in a factorial mesocosm experiment for 40 days. Physiology (respiration, nutrient flux) and cellular responses (lysosomal cell stability) were measured for both the coral and sponge. Exposure to elevated suspended sediment reduced metabolism, supressed silicate uptake and induced cellular instability of the sponge G. atlantica. However, combining sediment with warming caused G. atlantica to respire and excrete nitrogen at a greater rate. For the coral P. resedaeformis, suspended sediments reduced O:N ratios after 40 days, however, warming had a greater effect on P. resedaeformis physiology compared to sediment. Warming increased respiration, nitrogen excretion, and cellular instability which resulted in lower O:N ratios. We argue that suspended sediment and warming can act alone and also interact to cause significant harm to deep-sea biota, however responses are likely to be species-specific. Warming and pollution could interact in the deep-sea to cause mortality to the coral P. resedaeformis and to a lesser extent, the sponge G. atlantica. As foundation species, reducing the abundance of deep sea corals and sponges would likely impact the ecosystems they support

    Mixed effects of elevated pCO2 on fertilisation, larval and juvenile development and adult responses in the mobile subtidal scallop Mimachlamys asperrima (Lamarck, 1819)

    No full text
    Ocean acidification is predicted to have severe consequences for calcifying marine organisms especially molluscs. Recent studies, however, have found that molluscs in marine environments with naturally elevated or fluctuating CO2 or with an active, high metabolic rate lifestyle may have a capacity to acclimate and be resilient to exposures of elevated environmental pCO2. The aim of this study was to determine the effects of near future concentrations of elevated pCO2 on the larval and adult stages of the mobile doughboy scallop, Mimachlamys asperrima from a subtidal and stable physio-chemical environment. It was found that fertilisation and the shell length of early larval stages of M. asperrima decreased as pCO2 increased, however, there were less pronounced effects of elevated pCO2 on the shell length of later larval stages, with high pCO2 enhancing growth in some instances. Byssal attachment and condition index of adult M. asperrima decreased with elevated pCO2, while in contrast there was no effect on standard metabolic rate or pHe. The responses of larval and adult M. asperrima to elevated pCO2 measured in this study were more moderate than responses previously reported for intertidal oysters and mussels. Even this more moderate set of responses are still likely to reduce the abundance of M. asperrima and potentially other scallop species in the world's oceans at predicted future pCO2 levels

    Can prior exposure to stress enhance resilience to ocean warming in two oyster species?

    No full text
    Securing economically and ecologically significant molluscs, as our oceans warm due to climate change, is a global priority. South eastern Australia receives warm water in a strengthening East Australia Current and so resident species are vulnerable to elevated temperature and marine heat waves. This study tested whether prior exposure to elevated temperature can enhance resilience of oysters to ocean warming. Two Australian species, the flat oyster, Ostrea angasi, and the Sydney rock oyster, Saccostrea glomerata, were obtained as adults and "heat shocked" by exposure to a dose of warm water in the laboratory. Oysters were then transferred to elevated seawater temperature conditions where the thermal outfall from power generation was used as a proxy to investigate the impacts of ocean warming. Shell growth, condition index, lipid content and survival of flat oysters and condition of Sydney rock oysters were all significantly reduced by elevated seawater temperature in the field. Flat oysters grew faster than Sydney rock oysters at ambient temperature, but their growth and survival was more sensitive to elevated temperature. "Stress inoculation" by heat shock did little to ameliorate the negative effects of increased temperature, although the survival of heat-shocked flat oysters was greater than non-heat shocked oysters. Further investigations are required to determine if early exposure to heat stress can enhance resilience of oysters to ocean warming
    corecore