81 research outputs found

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Suprapubic track pressure and force-deformation measurements in a (live) human subject and in animal models post-mortem

    No full text
    Tests have been performed on animal models shortly post-mortem and on a healthy human subject in order to obtain estimates of the forces which act on suprapubic urinary catheters and similar devices and to develop an abdominal wall simulator. Such data and test methods are required for the systematic design of suprapubic devices because of the dual need to maintain the functionality of devices and to avoid excessive pressure on soft body tissue which could lead to ischaemia and in turn necrosis. In the post-mortem animal models, electrical excitation was applied to the abdominal wall in order to stimulate muscle activity. Two types of transducers were used: a soft membrane transducer (SMT) for pressure measurement and novel instrumented 'tongs' to determine indentation stiffness characteristics in the suprapubic track or artificial pathway created for a device. The SMT has been extensively used in the urethras and bladders of human subjects while the tongs were built specifically for these tests. Only the well-established SMT was used with the human subject; a peak pressure of 22 kPa was obtained. In the animal models the pressure profile given by the SMT had a peak whose position corresponded well with the estimated location of the rectus muscle measured on the fixed tissue section. The peak value was 5.5 kPa, comparable with values likely to cause necrosis if maintained for more than 1 day. Remarkably consistent indentation stiffness values were obtained with the instrumented tongs; all values were close to 0.45 N/mm (33 kPa/mm)
    corecore