1,203 research outputs found

    Complex networks for data-driven medicine: The case of Class III dentoskeletal disharmony

    Get PDF
    In the last decade, the availability of innovative algorithms derived from complexity theory has inspired the development of highly detailed models in various fields, including physics, biology, ecology, economy, and medicine. Due to the availability of novel and ever more sophisticated diagnostic procedures, all biomedical disciplines face the problem of using the increasing amount of information concerning each patient to improve diagnosis and prevention. In particular, in the discipline of orthodontics the current diagnostic approach based on clinical and radiographic data is problematic due to the complexity of craniofacial features and to the numerous interacting co-dependent skeletal and dentoalveolar components. In this study, we demonstrate the capability of computational methods such as network analysis and module detection to extract organizing principles in 70 patients with excessive mandibular skeletal protrusion with underbite, a condition known in orthodontics as Class III malocclusion. Our results could possibly constitute a template framework for organising the increasing amount of medical data available for patients' diagnosis

    Efficiency of informational transfer in regular and complex networks

    Get PDF
    We analyze the process of informational exchange through complex networks by measuring network efficiencies. Aiming to study non-clustered systems, we propose a modification of this measure on the local level. We apply this method to an extension of the class of small-worlds that includes {\it declustered} networks, and show that they are locally quite efficient, although their clustering coefficient is practically zero. Unweighted systems with small-world and scale-free topologies are shown to be both globally and locally efficient. Our method is also applied to characterize weighted networks. In particular we examine the properties of underground transportation systems of Madrid and Barcelona and reinterpret the results obtained for the Boston subway network.Comment: 10 pages and 9 figure

    Microscopic derivation of the Jaynes-Cummings model with cavity losses

    Get PDF
    In this paper we provide a microscopic derivation of the master equation for the Jaynes-Cummings model with cavity losses. We single out both the differences with the phenomenological master equation used in the literature and the approximations under which the phenomenological model correctly describes the dynamics of the atom-cavity system. Some examples wherein the phenomenological and the microscopic master equations give rise to different predictions are discussed in detail.Comment: 9 pages, 3 figures New version with minor correction Accepted for publication on Physical Review

    Relation Between the Widom line and the Strong-Fragile Dynamic Crossover in Systems with a Liquid-Liquid Phase Transition

    Full text link
    We investigate, for two water models displaying a liquid-liquid critical point, the relation between changes in dynamic and thermodynamic anomalies arising from the presence of the liquid-liquid critical point. We find a correlation between the dynamic fragility transition and the locus of specific heat maxima CPmaxC_P^{\rm max} (``Widom line'') emanating from the critical point. Our findings are consistent with a possible relation between the previously hypothesized liquid-liquid phase transition and the transition in the dynamics recently observed in neutron scattering experiments on confined water. More generally, we argue that this connection between CPmaxC_P^{\rm max} and dynamic crossover is not limited to the case of water, a hydrogen bond network forming liquid, but is a more general feature of crossing the Widom line. Specifically, we also study the Jagla potential, a spherically-symmetric two-scale potential known to possess a liquid-liquid critical point, in which the competition between two liquid structures is generated by repulsive and attractive ramp interactions.Comment: 6 pages and 5 figure

    Density anomaly in a competing interactions lattice gas model

    Full text link
    We study a very simple model of a short-range attraction and an outer shell repulsion as a test system for demixing phase transition and density anomaly. The phase-diagram is obtained by applying mean field analysis and Monte Carlo simulations to a two dimensional lattice gas with nearest-neighbors attraction and next-nearest-neighbors repulsion (the outer shell). Two liquid phases and density anomaly are found. The coexistence line between these two liquid phases meets a critical line between the fluid and the low density liquid at a tricritical point. The line of maximum density emerges in the vicinity of the tricritical point, close to the demixing transition

    Ising model in small-world networks

    Full text link
    The Ising model in small-world networks generated from two- and three-dimensional regular lattices has been studied. Monte Carlo simulations were carried out to characterize the ferromagnetic transition appearing in these systems. In the thermodynamic limit, the phase transition has a mean-field character for any finite value of the rewiring probability p, which measures the disorder strength of a given network. For small values of p, both the transition temperature and critical energy change with p as a power law. In the limit p -> 0, the heat capacity at the transition temperature diverges logarithmically in two-dimensional (2D) networks and as a power law in 3D.Comment: 6 pages, 7 figure

    Cavity losses for the dissipative Jaynes-Cummings Hamiltonian beyond Rotating Wave Approximation

    Full text link
    A microscopic derivation of the master equation for the Jaynes-Cummings model with cavity losses is given, taking into account the terms in the dissipator which vary with frequencies of the order of the vacuum Rabi frequency. Our approach allows to single out physical contexts wherein the usual phenomenological dissipator turns out to be fully justified and constitutes an extension of our previous analysis [Scala M. {\em et al.} 2007 Phys. Rev. A {\bf 75}, 013811], where a microscopic derivation was given in the framework of the Rotating Wave Approximation.Comment: 12 pages, 1 figur

    A network model for field and quenched disorder effects in artificial spin ice

    Full text link
    We have performed a systematic study of the effects of field strength and quenched disorder on the driven dynamics of square artificial spin ice. We construct a network representation of the configurational phase space, where nodes represent the microscopic configurations and a directed link between node i and node j means that the field may induce a transition between the corresponding configurations. In this way, we are able to quantitatively describe how the field and the disorder affect the connectedness of states and the reversibility of dynamics. In particular, we have shown that for optimal field strengths, a substantial fraction of all states can be accessed using external driving fields, and this fraction is increased by disorder. We discuss how this relates to control and potential information storage applications for artificial spin ices
    corecore