971 research outputs found

    Gapless Symmetry-Protected Topological Order

    Get PDF
    We introduce exactly solvable gapless quantum systems in d dimensions that support symmetry-protected topological (SPT) edge modes. Our construction leads to long-range entangled, critical points or phases that can be interpreted as critical condensates of domain walls “decorated” with dimension (d−1) SPT systems. Using a combination of field theory and exact lattice results, we argue that such gapless SPT systems have symmetry-protected topological edge modes that can be either gapless or symmetry broken, leading to unusual surface critical properties. Despite the absence of a bulk gap, these edge modes are robust against arbitrary symmetry-preserving local perturbations near the edges. In two dimensions, we construct wave functions that can also be interpreted as unusual quantum critical points with diffusive scaling in the bulk but ballistic edge dynamics

    A Universal Operator Growth Hypothesis

    Full text link
    We present a hypothesis for the universal properties of operators evolving under Hamiltonian dynamics in many-body systems. The hypothesis states that successive Lanczos coefficients in the continued fraction expansion of the Green's functions grow linearly with rate α\alpha in generic systems, with an extra logarithmic correction in 1d. The rate α\alpha --- an experimental observable --- governs the exponential growth of operator complexity in a sense we make precise. This exponential growth even prevails beyond semiclassical or large-NN limits. Moreover, α\alpha upper bounds a large class of operator complexity measures, including the out-of-time-order correlator. As a result, we obtain a sharp bound on Lyapunov exponents λL≀2α\lambda_L \leq 2 \alpha, which complements and improves the known universal low-temperature bound λL≀2πT\lambda_L \leq 2 \pi T. We illustrate our results in paradigmatic examples such as non-integrable spin chains, the Sachdev-Ye-Kitaev model, and classical models. Finally we use the hypothesis in conjunction with the recursion method to develop a technique for computing diffusion constants.Comment: 18+9 pages, 10 figures, 1 table; accepted versio

    Hydrodynamic electron flow and Hall viscosity

    Get PDF
    The authors acknowledge support from the Emergent Phenomena in Quantum Systems initiative of the Gordon and Betty Moore Foundation (T. S.) and NSF DMR-1507141 and a Simons Investigatorship (J. E. M.). We also acknowledge the support of the Max Planck Society and the UK Engineering and Physical Sciences Research Council under Grant No. EP/I032487/1.In metallic samples of small enough size and sufficiently strong momentum-conserving scattering, the viscosity of the electron gas can become the dominant process governing transport. In this regime, momentum is a long-lived quantity whose evolution is described by an emergent hydrodynamical theory. Furthermore, breaking time-reversal symmetry leads to the appearance of an odd component to the viscosity called the Hall viscosity, which has attracted considerable attention recently due to its quantized nature in gapped systems but still eludes experimental confirmation. Based on microscopic calculations, we discuss how to measure the effects of both the even and odd components of the viscosity using hydrodynamic electronic transport in mesoscopic samples under applied magnetic fields.PostprintPeer reviewe

    On the advantages and disadvantages of choice: future research directions in choice overload and its moderators

    Get PDF
    Researchers investigating the psychological effects of choice have provided extensive empirical evidence that having choice comes with many advantages, including better performance, more motivation, and greater life satisfaction and disadvantages, such as avoidance of decisions and regret. When the decision task difficulty exceeds the natural cognitive resources of human mind, the possibility to choose becomes more a source of unhappiness and dissatisfaction than an opportunity for a greater well-being, a phenomenon referred to as choice overload. More recently, internal and external moderators that impact when choice overload occurs have been identified. This paper reviews seminal research on the advantages and disadvantages of choice and provides a systematic qualitative review of the research examining moderators of choice overload, laying out multiple critical paths forward for needed research in this area. We organize this literature review using two categories of moderators: the choice environment or context of the decision as well as the decision-maker characteristics

    Integrable and Chaotic Dynamics of Spins Coupled to an Optical Cavity

    Get PDF
    We show that a class of random all-to-all spin models, realizable in systems of atoms coupled to an optical cavity, gives rise to a rich dynamical phase diagram due to the pairwise separable nature of the couplings. By controlling the experimental parameters, one can tune between integrable and chaotic dynamics on the one hand and between classical and quantum regimes on the other hand. For two special values of a spin-anisotropy parameter, the model exhibits rational Gaudin-type integrability, and it is characterized by an extensive set of spin-bilinear integrals of motion, independent of the spin size. More generically, we find a novel integrable structure with conserved charges that are not purely bilinear. Instead, they develop "dressing tails" of higher-body terms, reminiscent of the dressed local integrals of motion found in many-body localized phases. Surprisingly, this new type of integrable dynamics found in finite-size spin-1/2 systems disappears in the large-S limit, giving way to classical chaos. We identify parameter regimes for characterizing these different dynamical behaviors in realistic experiments, in view of the limitations set by cavity dissipation

    A re-appraisal of pathogenic mechanisms bridging wet and dry age-related macular degeneration leads to reconsider a role for phytochemicals

    Get PDF
    Which pathogenic mechanisms underlie age-related macular degeneration (AMD)? Are they different for dry and wet variants, or do they stem from common metabolic alterations? Where shall we look for altered metabolism? Is it the inner choroid, or is it rather the choroid–retinal border? Again, since cell-clearing pathways are crucial to degrade altered proteins, which metabolic system is likely to be the most implicated, and in which cell type? Here we describe the unique clearing activity of the retinal pigment epithelium (RPE) and the relevant role of its autophagy machinery in removing altered debris, thus centering the RPE in the pathogenesis of AMD. The cell-clearing systems within the RPE may act as a kernel to regulate the redox homeostasis and the traffic of multiple proteins and organelles toward either the choroid border or the outer segments of photoreceptors. This is expected to cope with the polarity of various domains within RPE cells, with each one owning a specific metabolic activity. A defective clearance machinery may trigger unconventional solutions to avoid intracellular substrates’ accumulation through unconventional secretions. These components may be deposited between the RPE and Bruch’s membrane, thus generating the drusen, which remains the classic hallmark of AMD. These deposits may rather represent a witness of an abnormal RPE metabolism than a real pathogenic component. The empowerment of cell clearance, antioxidant, anti-inflammatory, and anti-angiogenic activity of the RPE by specific phytochemicals is here discussed

    The High Mobility Group (Hmg) Boxes of the Nuclear Protein Hmg1 Induce Chemotaxis and Cytoskeleton Reorganization in Rat Smooth Muscle Cells

    Get PDF
    HMG1 (high mobility group 1) is a ubiquitous and abundant chromatin component. However, HMG1 can be secreted by activated macrophages and monocytes, and can act as a mediator of inflammation and endotoxic lethality. Here we document a role of extracellular HMG1 in cell migration. HMG1 (and its individual DNA-binding domains) stimulated migration of rat smooth muscle cells in chemotaxis, chemokinesis, and wound healing assays. HMG1 induced rapid and transient changes of cell shape, and actin cytoskeleton reorganization leading to an elongated polarized morphology typical of motile cells. These effects were inhibited by antibodies directed against the receptor of advanced glycation endproducts, indicating that the receptor of advanced glycation endproducts is the receptor mediating the HMG1-dependent migratory responses. Pertussis toxin and the mitogen-activated protein kinase kinase inhibitor PD98059 also blocked HMG1-induced rat smooth muscle cell migration, suggesting that a Gi/o protein and mitogen-activated protein kinases are required for the HMG1 signaling pathway. We also show that HMG1 can be released by damage or necrosis of a variety of cell types, including endothelial cells. Thus, HMG1 has all the hallmarks of a molecule that can promote atherosclerosis and restenosis after vascular damage

    Strong peak in Tc of Sr2RuO4 under uniaxial pressure

    Get PDF
    Sr2RuO4 is an unconventional superconductor that has attracted widespread study because of its high purity and the possibility that its superconducting order parameter has odd parity. We study the dependence of its superconductivity on anisotropic strain. Applying uniaxial pressures of up to ~1 gigapascals along a 〈100〉 direction (a axis) of the crystal lattice results in the transition temperature (Tc) increasing from 1.5 kelvin in the unstrained material to 3.4 kelvin at compression by ≈0.6%, and then falling steeply. Calculations give evidence that the observed maximum Tc occurs at or near a Lifshitz transition when the Fermi level passes through a Van Hove singularity, and open the possibility that the highly strained, Tc = 3.4 K Sr2RuO4 has an even-parity, rather than an odd-parity, order parameter.PostprintPeer reviewe
    • 

    corecore