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 Sr 2RuO 4 is an unconventional superconductor that has attracted widespread study 

because of its high purity and the possibility that its superconducting order parameter has odd 

parity.  We study the dependence of  its superconductivity   on anisotropic strain. Applying 

uniaxial pressures of up to ~1 GPa along a 〈100〉 direction (𝑎-axis) of the crystal lattice results 

in  𝑇𝑐 increasing from 1.5 K in the unstrained material to 3.4 K at compression by ≈0.6%, and 

then falling steeply. Calculations give evidence that the observed maximum 𝑇𝑐 occurs at or 

near a Lifshitz transition when the Fermi level passes through a Van Hove singularity, and  

open the possibility that the highly strained, 𝑇𝑐=3.4 K  Sr 2RuO 4  has an even- rather than an 

odd-parity order parameter.  

The formation of superconductivity by the condensation of electron pairs into a 
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coherent state is one of the most spectacular many-body phenomena in physics. Initially, all 

known superconducting condensates were of the same basic class, in which electrons paired 

into spin-singlet states, forming condensates of even parity whose phase 𝜙 is independent of 

wave vector 𝐤 [1]. Condensates of this form  are insensitive to the presence of non-magnetic 

scattering, and so are easier to observe in materials grown with standard levels of disorder. In 

the last three decades, a richer and more exciting picture has emerged. In the growing number 

of known unconventional superconductors, both the phase and amplitude of the condensate 

order parameter have strong 𝐤 dependence. Unconventional superconductors can have both 

even and odd parity, and are sensitive to the presence of disorder [2, 3]. These  materials give 

a unique opportunity to study the collective physics of interacting electrons and the 

mechanisms by which the condensation from the normal metallic state occurs. However, 

considerable material and experimental challenges must be overcome. 

The subject of the research described in this paper,  Sr  2 RuO  4   (transition 

temperature 𝑇𝑐 ≈ 1.5 K) [4], is the most disorder-sensitive of all known superconductors [5]. 

However the stringent requirements this places on material purity also bring advantages. The 

long mean free paths of ~1 𝜇m that are required to observe its superconductivity in the clean 

limit have also enabled extensive studies of its normal state via the de Haas-van Alphen effect 

[6]. This work, combined with angle-resolved photoemission experiments [7] and electronic 

structure calculations [8, 9, 10], has led to a detailed understanding of the quasi-2D Fermi 

surface topography, and the effective masses of the Landau Fermi liquid quasiparticles which 

pair to form the superconducting condensate. 

However, in spite of over two decades of work, the superconducting order parameter is 



not known with certainty. Soon after the discovery of the superconductivity, the similarity of 

the Landau parameters of  Sr 2RuO 4  to those of the famous 𝑝-wave superfluid  3He led to 

the proposal that it might be an odd-parity superconductor with spin-triplet 𝑝-wave pairing 

[11]. Knight shift measurements [12, 13] and, recently, proximity-induced superconductivity in 

epitaxial ferromagnetic SrRuO 3 layers [14] provide strong evidence for triplet pairing. Muon 

spin rotation [15] and Kerr rotation [16] experiments point to time reversal symmetry breaking 

at 𝑇𝑐, and tunneling spectroscopy to chiral edge states [17]. Josephson interferometry indicates 

the presence of domains in the superconducting state and gives evidence for odd parity [18, 

19]. In combination, these observations suggest the existence of a chiral, spin-triplet 

superconducting state with an order parameter of the form 𝑝𝑥 ± 𝑖𝑝𝑦. Although the edge 

currents predicted for chiral 𝑝-wave order are not seen [20, 21, 22], there are proposals to 

explain why these might be unobservably small in  Sr 2RuO 4  [23, 24, 25, 26]. More difficult 

to   explain in the context of spin-triplet pairing is why the upper critical field 𝐻𝑐2 for 

in-plane fields is first-order at low temperatures [27] and smaller than predictions for orbital 

limiting based on anisotropic Ginzburg-Landau theory [28]. More complete reviews of the 

superconductivity of  Sr 2RuO 4  and arguments for and against various order parameters can 

be found in Refs. [29, 30, 31, 32]. 

The electronic structure of  Sr 2RuO 4  is relatively simple compared with  those of 

many unconventional superconductors. Its Fermi surfaces are known with accuracy and 

precision [6] and it shows good Fermi liquid behavior in the normal state [33]. Therefore, 

gaining a full understanding of the superconductivity of  Sr 2RuO 4  is an important challenge 

and a benchmark for the field. An approach not extensively explored so far is to perturb the 



underlying electronic structure as far as possible from its native state and observe the effects 

on the superconductivity. Partial substitution of La for Sr [34,35] and epitaxial thin film growth 

on lattice-mismatched substrates [36] have both been used to push one of the Fermi surface 

sheets of  Sr 2RuO 4  through a Lifshitz transition, i.e. a topological change in the Fermi 

surface, and an associated Van Hove singularity (VHS) in the density of states. This is a major 

qualitative change in the electronic structure, and it would be interesting to see how the 

superconductivity responds. However, the disorder sensitivity of the superconductivity of  

Sr 2RuO 4  is so strong that it was not possible to do either experiment in a sufficiently clean 

way for any superconductivity to survive. 

In principle, uniaxial pressure has the potential for tuning the electronic structure of  

Sr  2 RuO  4   without introducing disorder and destroying the superconductivity. Pressure 

applied along a 〈100〉 lattice direction, lifting the native tetragonal symmetry of  Sr 2RuO 4 , 

has been shown to increase the bulk 𝑇𝑐 to at least 1.9 K [37]. There are hints that 𝑇𝑐~3 K in 

pure  Sr 2RuO 4  is achievable with lattice distortion [38, 39], however it has only been seen 

locally, which complicates determination of its origin and properties. By extending the 

piezoelectric-based compression techniques introduced in Ref. [37] to achieve much higher 

compressions, we demonstrate in this work the existence of a well-defined peak in 𝑇𝑐 at 3.4 K, 

at approximately 0.6% compression. The Young’s modulus of  Sr 2RuO 4  is 176 GPa [40], so 

this compression corresponds to a uniaxial pressure of ~1 GPa. The factor of 2.3 increase in 𝑇𝑐 

is accompanied by more than a factor of twenty enhancement of 𝐻𝑐2, for fields along the 

𝑐-axis. We complement our experimental observations with two classes of calculation. Density 

functional theory (DFT) calculations give evidence that the peak in 𝑇𝑐 likely coincides with a 



Lifshitz transition. Then, to gain insight into the effect of these large strains on possible 

superconducting order parameters of  Sr 2RuO 4 , we employ weak-coupling calculations that 

include spin-orbit and interband couplings, extending the work of Ref. [41].  

Calculated band structure of Sr 2RuO 4  

For guidance on the likely effect of strain on the electronic structure, we start with the 

results of the DFT calculations of the band structure of  Sr 2RuO 4  . Unstrained lattice 

parameters were taken from the 𝑇 = 15 K data of Ref. [42]. In the experiment, the sample is a 

high-aspect-ratio bar that is compressed or tensioned along its length, so in the calculation the 

longitudinal strain 𝜀𝑥𝑥 is an independent variable, and the transverse strains are set, as in the 

experiment, according to the Poisson’s ratios of  Sr 2RuO 4  : 𝜀𝑦𝑦 = −𝜈𝑥𝑦𝜀𝑥𝑥 , and 𝜀𝑧𝑧 =

−𝜈𝑥𝑧𝜀𝑥𝑥 [40]. 

The robustness of the results against different standard approximations was verified by 

calculations with a moderate density of 𝑘-points; more details are given in the Materials and 

Methods section. The final calculations, made in the local density approximation with spin-orbit 

coupling and apical oxygen position relaxation, were then extended to 343,000 𝑘-points: 

because of   proximity of the VHS to the Fermi level, an unusually large number of 𝑘-points 

was required for convergence. The first Lifshitz transition was found to occur with a 

compressive strain of 𝜀𝑥𝑥 = 𝜀VHS ≈ −0.0075. The calculated Fermi surfaces at 𝜀𝑥𝑥 = 0 and 

𝜀𝑥𝑥 = 𝜀VHS are shown in  Fig. 1 , where it can be seen that compression along 𝐱̂ leads to a 

Lifshitz transition in the 𝛾 Fermi surface along 𝑘𝑦. Thanks to the low 𝑘𝑧 dispersion, it occurs 

for all 𝑘𝑧 over a very narrow range of 𝜀𝑥𝑥, starting at 𝜀𝑥𝑥 = (−0.75 ± 0.01) × 10−2 and 

finishing by (−0.77 ± 0.01) × 10−2. Cross-sections at 𝑘𝑧 = 0 are also shown. In fully 2D 



approximations of  Sr 2RuO 4  the Lifshitz transition occurs at a single Van Hove point, labeled 

in the figure and coinciding with the 2D zone boundary of an isolated RuO 2 sheet. The 

calculated change in the total density of states (DOS) as a function of tensile and compressive 

strains (Fig. 1C) has sharp maxima that indicate Lifshitz transitions, and should be taken as only 

a qualitative guide to expectations for real  Sr 2RuO 4 , in which many-body effects are likely 

to strengthen the quasiparticle renormalization of 𝑣𝐹 and the DOS in the vicinity of the peaks. 

The peak on the tension side corresponds to a Lifshitz transition along 𝑘𝑥, which is not 

accessible experimentally because samples break under strong tension. 

Measurements of superconducting properties under uniaxial pressure 

 

 The experimental apparatus is based on that presented in Refs. [37] and [43], but 

modified to achieve the larger strains required for the current project. Samples were cut with a 

wire saw into high-aspect-ratio bars and annealed at 450 ∘ C for two days in air, to partially 

relax dislocations created by the cutting. Their ends were secured in the apparatus with epoxy 

[44] (Fig. 2) . Piezoelectric actuators push or pull on one end to strain the exposed central 

portion of the sample; to achieve high strains, 18 mm-long actuators are used, instead of the 4 

mm-long ones used previously. Because samples break under strong tension, here we worked 

almost exclusively with compression. The superconducting transitions were measured 

magnetically, by measuring the mutual inductance between two coils of diameter ~ 1 mm 

placed near the centre of the sample. The r.m.s. excitation field applied was ~ 0.2 Oe, mostly 

parallel to the samples’ 𝑐 axes, at frequencies between 1 and 20 kHz. Some samples also had 

electrical contacts for resistivity measurements. 

 



 

 

Five samples were measured in total, and all gave consistent results.  Figure 3 shows 

the real part of the magnetic susceptibility 𝜒′ against temperature at various compressive 

strains for samples 1 and 3, with zero-strain 𝑇𝑐’s of about 1.4 K. The strains are determined 

using a parallel-plate capacitive sensor incorporated into the apparatus. This sensor returns the 

applied displacement, and the sample strain is determined by dividing this displacement by the 

length of the strained portion of the sample. This strained length is affected in turn by elastic 

deformation of the epoxy that secures the sample. Comparing results from different samples, 

expected to have the same intrinsic behavior, yields a ~20% uncertainty in the strain 

determination, whose dominant origin is probably variability and uncertainty in the geometry 

and elastic properties of the epoxy. 

When samples are initially compressed, the transition moves to higher temperature, 

and broadens somewhat. This broadening differs in form and magnitude from sample to 

sample, so is probably extrinsic. For example, imperfection in the sample mounts is likely to 

lead to some sample bending as force is applied, imposing a strain gradient across the thickness 

of the sample, and in addition a low density of dislocations and/or ruthenium inclusions may 

introduce some internal strain disorder. However, in spite of the likely presence of some strain 

inhomogeneity, the transition becomes very sharp as it approaches the maximum 𝑇𝑐, about 3.4 

K. Sample 3 could be compressed well beyond this maximum, and 𝑇𝑐 was found to drop 

rapidly. In checks made on multiple samples, upon on releasing the strain and returning to 

𝜀𝑥𝑥~0, the 𝜒′(𝑇) curves were found to be unchanged (see Fig. S4 [45]), indicating that the 

sample deformation is elastic. 



 

 

 

The peak in 𝑇𝑐 can be clearly seen in the graph of 𝑇𝑐 against 𝜀𝑥𝑥 for  samples 1, 3, 

and 5, (Fig. 4) . The strain scales have been normalized in the plot. 𝜀𝑥𝑥 at the peak, from 

averaging independent determinations from samples 1, 2, 3, and 5, is (−0.60 ± 0.06) × 10−2. 

The graph is based exclusively on magnetic measurements. The maximum Tc of sample 5, at 

≈3.5 K, slightly exceeds that of the other samples. Resistivity measurements can show 

anomalously high Tc due to percolation along locally strained paths, however on samples where 

the resistivity was measured (samples 3 and 5), the resistive transitions never exceeded the 

highest magnetic 𝑇𝑐 by more than 0.08 K, confirming that it is the maximum 𝑇𝑐. 

 

 

 

The apparatus is constructed of nonmagnetic materials, allowing measurement of the 

superconducting critical fields. Sample 4 was mounted in a vector magnet, with the pressure 

axis (a 〈100〉 lattice direction) parallel to the magnet 𝑧-axis, allowing the 𝑐-axis and in-plane 

upper critical fields to be measured in a single cool-down. The very sharp transitions in 𝜒′(𝑇) 

of  Sr  2 RuO  4   compressed to the peak in 𝑇𝑐  (referred to henceforth as 𝑇𝑐 = 3.4  K  

Sr 2RuO 4 ) make determination of 𝑇𝑐  and 𝐻𝑐2 very simple: in all temperature and field 

ramps a sharp cusp in 𝜒′(𝑇)  was observed, which could be identified as 𝑇𝑐  or 𝐻𝑐2 . 

Specifically, the transition was identified as the intersection of linear fits to data just below and 

above the cusp. The in-plane 𝐻𝑐2 of  Sr 2RuO 4  is known to be very sensitive to precise 

alignment of the field with the plane, so for in-plane measurements the vector field capability 

was used to align the field to within 0. 2∘  of the 𝑎𝑏  plane. Within the 𝑎𝑏  plane, the 



alignment to the 〈100〉 direction is with standard ~3 ∘ precision. In long field ramps the 

magnet was found to have ~0.1 T-scale hysteresis, so when field ramps were performed the 

transition was first located approximately, and then precisely with up- and down-ramps over a 

0.35 T range, for which the magnet hysteresis was found to be ~10 mT. 

Results are shown in  Fig. 5 . The 𝑐-axis 𝐻𝑐2, 𝐻𝑐2∥𝑐, of 𝑇𝑐 = 3.4 K  Sr 2RuO 4  is 

concave, and at 𝑇 → 0 slightly exceeds the 1.5 T limit of the transverse coils of the vector 

magnet. For in-plane fields, the upper critical field 𝐻𝑐2∥𝑎 reaches 4.7 T as 𝑇 → 0, and both 

temperature and field ramps show hysteresis below ≈ 1.8 K, indicating a first-order transition. 

 

 

 

A concave 𝐻𝑐2(𝑇) curve is an indication of high gap non-uniformity, i.e. substantially 

different gap magnitudes on different Fermi sheets, or strong variation within each sheet, or 

both. It has been seen in e.g. MgB 2 [46] and Be(Fe,Co) 2As 2 [47]. In 𝑇𝑐 = 3.4 K  Sr 2RuO 4 , 

the slope |𝑑𝐻𝑐2∥𝑐/𝑑𝑇| is found to steadily increase to the lowest temperatures measured, 

although 𝐻𝑐2∥𝑐(𝑇) must eventually become convex because 𝑑𝐻𝑐2/𝑑𝑇 must approach zero as 

𝑇 → 0.  𝐻𝑐2∥𝑐  of unstrained  Sr 2RuO 4 , from Ref. [48] (Fig. 5D)  is weakly concave at 

higher temperatures, but only above ~ 0.7 K, a much higher fraction of 𝑇𝑐(𝐻 = 0) than the 

concave-convex crossover in 𝑇𝑐 = 3.4 K  Sr 2RuO 4 . This difference in the 𝐻𝑐2(𝑇) curves 

indicates that the gap varies more widely across the Fermi surfaces in 𝑇𝑐 = 3.4 K  Sr 2RuO 4  

than in unstrained  Sr 2RuO 4 . 

 



Gap symmetry in 𝑇𝑐 = 3.4 K  Sr 2RuO 4 

The 𝑇 → 0 critical field values for 𝑇𝑐 = 3.4 K  Sr 2RuO 4  are striking. 𝐻𝑐2∥𝑐(𝑇 → 0) 

is enhanced by more than a factor of twenty relative to unstrained  Sr 2RuO 4. 𝐻𝑐2∥𝑎(𝑇 → 0)  

of unstrained Sr2RuO4 is 1.5 T [28], and it is enhanced by a factor of only ≈ 3 in 𝑇𝑐 = 3.4 K  

Sr 2RuO 4. In the simplest picture of a fully two-dimensional triplet superconductor with the 

spins in the plane, the ratio 𝛾𝑠 between 𝐻𝑐2∥𝑎 and 𝐻𝑐2∥𝑐 would be infinite, because neither 

orbital nor Pauli limiting would apply for in-plane fields [49]. However we observe that 𝛾𝑠 is 

reduced from a value of ≈ 20 in unstrained  Sr 2RuO 4  to ≈ 3 in 𝑇𝑐 = 3.4 K  Sr 2RuO 4 . 

The electronic structure calculations presented in  Fig. 1 indicate that  Sr 2RuO 4  remains 

quasi-2D at high strains, a result supported by the observation in  Fig. 5 that just below 𝑇𝑐 

the slope |𝑑𝐻𝑐2∥𝑎/𝑑𝑇| far exceeds |𝑑𝐻𝑐2∥𝑐/𝑑𝑇|. Therefore it seems unlikely that such a 

reduction in 𝛾𝑠 could arise from an orbital limiting effect. In contrast, the first-order nature of 

the transition under strong in-plane field is consistent with a hypothesis of Pauli limiting [50], as 

is the absolute value of 𝐻𝑐2∥𝑎. In a mean-field superconductor both 𝑇𝑐 and the Pauli-limited 

𝐻𝑐2 are expected to vary linearly with the 𝑇 → 0 gap magnitude |Δ| [51]. The rise of 𝐻𝑐2∥𝑎 

(T->0) from 1.5 to 4.7 T in 𝑇𝑐 = 3.4 K  Sr 2RuO 4  is somewhat but not drastically faster than 

linear against 𝑇𝑐. In combination, these observations motivate investigation of whether the 

𝑇𝑐 = 3.4 K state might be an even-parity condensate of spin-singlet pairs. 

In fact, a qualitative analysis of the enhancement of 𝐻𝑐2∥𝑐 with strain also points to this 

possibility. In a mean-field superconductor, the orbitally-limited 𝐻𝑐2(𝑇 → 0) is proportional to 

a weighted average of [|Δ|𝑁(𝐸𝐹)]2, where 𝑁(𝐸𝐹) is the Fermi surface density of states. 

Because  𝑇𝑐 is proportional to a 𝑘-space average of |Δ|, if |Δ(𝐤)| is multiplied by a factor 



and 𝑁(𝐸𝐹) is not modified, the quantity 𝐻𝑐2/𝑇𝑐
2 should remain constant. However when 

Sr2RuO4 is pressurized along a 〈100〉 direction N(EF) is substantially modified: it increases 

strongly near the Van Hove point. If |∆| is large in this region of the Brillouin zone 𝐻𝑐2/

𝑇𝑐
2 might increase with strain. However, the Van Hove point is invariant under inversion, so |∆| 

of an odd-parity order must be zero at the Van Hove point and parametrically small in its 

vicinity. Qualitatively, one might therefore expect stronger enhancement of 𝐻𝑐2/𝑇𝑐
2  for 

even-parity order, for which large |Δ| is allowed near the Van Hove point, than for odd-parity 

order, where |Δ| must be small in just the regions where 𝑁(𝐸𝐹) is largest.  

We observe, based on the data in Fig. 5, that 𝐻𝑐2∥𝑐(𝑇 → 0)/𝑇𝑐
2 is enhanced by a factor 

of 3.6 in 𝑇𝑐 = 3.4 K  Sr 2RuO 4.  Alternatively, because the form of Hc2(T) is so different 

between unstrained and Tc = 3.4 K Sr 2RuO 4, it may be preferable to take a measure of Hc2 that 

relies only on data near Tc, i.e. a hypothetical Hc2(0) for the TTc gap structure that excludes 

anomalous strengthening of the superconductivity at lower temperatures. Applying the 

Werthamer-Helfand-Hohenberg formula, Hc2(0) = -0.7(dHc2/dT)Tc [52], yields 0.70 and 0.056 T, 

respectively, for sample #4 strained to maximum Tc and for the unstrained sample of Fig. 5D. If 

these values are used in place of the actual 𝐻𝑐2∥𝑐(𝑇 → 0), the enhancement is 1.8. In terms of 

the argument discussed above, the enhancement of 
𝐻𝑐2∥𝑐

𝑇𝑐
2  defined by either criterion seems to 

favour an even- over an odd-parity order parameter for Tc = 3.4 K Sr 2RuO 4.  

To investigate these qualitative arguments in more depth and on the basis of a realistic 

calculation taking into account the multi-sheet Fermi surface of  Sr  2 RuO  4  , we have 

extended to strained Sr 2RuO 4 a 2D weak-coupling calculation, presented in Ref. [41] as an 

extension of ideas first presented in Ref. [53]. The advantage of the weak-coupling approach is 



that it allows an unbiased comparison of different possible superconducting order parameters. 

Although the weak-coupling approximation is questionable in materials such as  Sr 2RuO 4  in 

which the Hubbard parameter 𝑈 is of order the bandwidth [54], the key results of Ref. [41] 

were recently reproduced in a finite-𝑈 calculation of  Sr 2RuO 4  [55], further motivating the 

use of the weak-coupling approximation here. In our calculations, whose details are discussed 

further in [45], a tight-binding model of all three Fermi surfaces of  Sr 2RuO 4  is specified, 

including the effects of spin-orbit and interband coupling, and fitted to the experimental 

dispersion. The remaining free parameter is the ratio of Hund’s coupling to Hubbard 

interaction, 𝐽/𝑈. In Ref. [41], it was found that two ranges of 𝐽/𝑈 give gap anisotropy 

consistent with specific heat data [56]: 𝐽/𝑈~0.08 and 𝐽/𝑈~0.06. Both yield odd-parity 

pairing; the higher range gives helical order (𝐝~𝑝𝑥𝐱̂ + 𝑝𝑦𝐲̂) with |𝐝| slightly larger on the 𝛼 

and 𝛽  sheets,  whereas the lower value favours chiral order [𝐝~(𝑝𝑥 ± 𝑖𝑝𝑦)𝐳̂] and |𝐝| 

slightly larger on 𝛾. 𝐝 is the so-called 𝑑-vector, that describes a spin-triplet order parameter, 

including its spin structure. For states of the type considered here, the energy gap |Δ| equals 

|𝐝|. 

Here, we present 𝐽/𝑈 = 0.06  results for strained  Sr  2 RuO  4  ; the 𝐽/𝑈 = 0.08 

results are similar [45]. At zero strain, the point group symmetry of the lattice is 𝐷4ℎ, and 

(𝑝𝑥 ± 𝑖𝑝𝑦)𝐳̂ and 𝑑𝑥2−𝑦2 are respectively the most favoured odd- and even-parity irreducible 

representations. At nonzero strain, the point group symmetry becomes 𝐷2ℎ. (𝑝𝑥 ± 𝑖𝑝𝑦)𝐳̂ is 

resolved into the separate irreducible representations 𝑝𝑥𝐳̂ and 𝑝𝑦𝐳̂, and 𝑑𝑥2−𝑦2 becomes 

𝑑𝑥2−𝑦2 + 𝑠. Strain is simulated in the calculation by introducing anisotropy into the hopping 

integrals. The nearest-neighbor hopping 𝑡, for example, is resolved into 𝑡𝑥 = 𝑡 × (1 + 𝑎𝜀𝑥𝑥) 



and 𝑡𝑦 = 𝑡 × (1 − 𝑎𝜈𝑥𝑦𝜀𝑥𝑥), where 𝑎 is chosen such that the Lifshitz transition occurs at 

𝜀𝑥𝑥 = −0.0075, in agreement with the LDA+SOC calculation. 

𝑝𝑦𝐳̂ and 𝑝𝑥𝐳̂ are respectively the highest-𝑇𝑐 order parameters under compression and 

tension; compression along 𝐱̂ favors 𝑝𝑦 because it increases the density of states on the 

sections of Fermi surface where 𝑝𝑦 order has the largest gap magnitude, and similarly for 

tension and 𝑝𝑥. For 𝐽/𝑈 = 0.06 the possible helical orders (𝐝~𝑝𝑥𝐱̂ ± 𝑝𝑦𝐲̂ or 𝑝𝑥𝐲̂ ± 𝑝𝑦𝐱̂) all 

have lower 𝑇𝑐  at all strains calculated. Results for 𝑇𝑐  against 𝜀𝑥𝑥  for 𝑝𝑥𝐳̂ , 𝑝𝑦𝐳̂ , and 

𝑑𝑥2−𝑦2 + 𝑠 orders are shown in  Fig. 6 . To assign numerical values to 𝑇𝑐, the bandwidth and 

𝑈/𝑡 are chosen to set 𝑇𝑐(𝜀𝑥𝑥 = 0) = 1.5 K and 𝑇𝑐(𝜀𝑥𝑥 = 𝜀VHS) ≈ 3.4 K; by this procedure 

𝑈/𝑡 comes to 6.2. 𝑇𝑐 of the 𝑝𝑥 and 𝑝𝑦 orders cross at 𝜀𝑥𝑥 = 0, as they must [57], and the 

slope |𝑑𝑇𝑐/𝑑𝜀𝑥𝑥| as 𝜀𝑥𝑥 → 0 is ~0.3 K/%. This crossing would appear as a cusp in a 𝑇𝑐(𝜀𝑥𝑥) 

curve derived from measurements that detect only the higher 𝑇𝑐, and to search for this cusp 

was the primary aim of Ref. [37]. Although no cusp was seen, the resolution of that experiment 

does not rule out a cusp of this magnitude, and furthermore a cusp could be rounded by 

fluctuations [58]. At higher strains, 𝑇𝑐 of both even- and odd-parity orders is found to peak at 

𝜀𝑥𝑥 ≈ 𝜀VHS. (The equivalent peaks on the tension side, as noted above, are not accessible 

experimentally.) Odd-parity order is found to be favoured at nearly all strains, however 𝑇𝑐 of 

the even-parity order is found to peak more strongly as the Van Hove singularity is approached, 

and in the immediate vicinity of the VHS even- and odd-parity orders are nearly degenerate in 

this calculation. 

 

 

 



The 𝑘-space structure of the favored odd- and even-parity orders at 𝜀𝑥𝑥 = 0 and 𝜀VHS 

is shown in  Fig. 7 . For both parities, the structure of Δ(𝐤) is quite complicated; 𝑝𝑥 ± 𝑖𝑝𝑦, 

𝑝𝑦, etc. are labels of the irreducible representation, not accurate descriptions of the full gap 

structure. At 𝜀𝑥𝑥 = 𝜀VHS the 𝑝𝑦 order has two nodes on the 𝛾 sheet: one at (0, 𝜋), where 

the 𝛾 sheet touches the zone boundary and odd-parity orders must have zero amplitude, and 

the other along (𝑘𝑥, 0), where 𝑝𝑦 order has zero amplitude by symmetry. Also, whereas at 

zero strain the odd-parity |Δ| is generally largest on the 𝛾 sheet, at 𝜀𝑥𝑥 = 𝜀VHS it is larger on 

the 𝛼 and 𝛽 sheets, owing to the frustration for odd-parity order at the Van Hove point on 

the 𝛾 sheet. 𝑇𝑐 still peaks at 𝜀VHS because the small-𝐪 fluctuations on 𝛾, which  diverge 

at 𝜀VHS, also contribute to superconductivity on 𝛼 and 𝛽 through inter-orbital interaction 

terms. In contrast, even-parity order does not suffer frustration at the Van Hove point. Its gap 

remains largest on 𝛾 at 𝜀𝑥𝑥 = 𝜀VHS, and its 𝑇𝑐 peaks more strongly. 

 

 

 

Following Ref. [59], we calculate the orbital-limited 𝐻𝑐2∥𝑐/𝑇𝑐
2 at various applied strains 

in the semi-classical approximation. The full expression is given in [45]; an abbreviated form is: 

𝐻𝑐2 ∝ 𝑇𝑐
2exp(−2〈|𝜓𝜇|2log𝑣̃𝜇〉). 〈. . . 〉 is a Fermi surface average, 𝜓(𝐤) ∝ Δ(𝐤), 𝜇 is a band 

index, and 𝑣̃ is a velocity derived from the Fermi velocity. The results support the qualitative 

arguments made above and are shown in  Fig. 8 . For 𝑝𝑦 order the shift of the gap onto the 

𝛼 and 𝛽 sheets causes a decrease in 𝐻𝑐2∥𝑐/𝑇𝑐
2, because these sheets have lower DOS than 

the 𝛾 sheet. In contrast, the increased DOS around the Van Hove point causes 𝐻𝑐2∥𝑐/𝑇𝑐
2 of 

𝑑𝑥2−𝑦2 + 𝑠 order to increase towards the VHS. The actual 𝐻𝑐2∥𝑐/𝑇𝑐
2 may be enhanced over 



the weak-coupling results by strengthened many-body effects towards the VHS, however the 

results emphasize a strong quantitative disparity between 𝐻𝑐2∥𝑐/𝑇𝑐
2 for even- and odd-parity 

order parameters.  

We note that if unstrained Sr 2RuO 4 has 𝑝𝑥 ± 𝑖𝑝𝑦 order, at nonzero strain the low-T 

order is likely still to be chiral, but with different amplitudes of the 𝑝𝑥 and 𝑝𝑦 components.  

In Fig. 8, the goal is to determine the expected trend in 𝐻𝑐2∥𝑐/𝑇𝑐
2 for odd-parity order by 

comparing the same irreducible representation, 𝑝𝑥 or 𝑝𝑦, at different strains.  If the order is 

actually 𝑎𝑝𝑥 ± 𝑖𝑏𝑝𝑦, with 𝑎 ≠ 𝑏 , 𝐻𝑐2∥𝑐  will generally be higher, but a similar trend in 

𝐻𝑐2∥𝑐/𝑇𝑐
2  is expected. 

Although heat capacity data suggest 𝐽/𝑈~0.06 or ~0.08, we also considered 𝐽/𝑈 

over a wider range, from 0 to 0.3. The essential qualitative features presented here for 𝐽/𝑈 =

0.06, the peak in 𝑇𝑐 at the Lifshitz transition for both even- and odd-parity order, and the 

enhancement (suppression) of 𝐻𝑐2/𝑇𝑐
2 for even (odd) parity, are found to occur across this 

range. Results for 𝐽/𝑈 =0.08, 0, and 0.25 are shown in [45]. 

 Discussion 

One long-standing puzzle in the physics of  Sr 2RuO 4  has been the origin of the 

so-called 3 K phase, which is 𝑇𝑐~3 K superconductivity observed in eutectic crystals containing 

inclusions of Ru metal in a matrix of  Sr 2RuO 4  [60]. It has been established that this 

higher-𝑇𝑐 superconductivity has a low volume fraction [60, 61], showing that it occurs at the 

inclusions rather than the bulk, and further that it occurs on the  Sr 2RuO 4  side of Ru- 

Sr 2RuO 4  interfaces [62]. Although full proof would require observation of the strain field 

around Ru inclusions, it now seems very likely that local internal strain is the origin of the 3 K 



phase. The upper critical fields of the 3 K phase have been obtained through measurement of 

resistivity along extended inclusions, and were found to be ~1 T for 𝑐-axis and ~3.5 T for 

in-plane fields [63]. The similarity of these fields with the critical fields of bulk 𝑇𝑐 = 3.4 K  

Sr 2RuO 4  further supports the hypothesis that the 3 K phase is a local strain effect, although 

it is also possible that the observed 3 K phase critical fields are enhanced by the 

two-dimensional geometry of interface superconductivity [63, 64]. 

Three-band models in Refs. [55] and [65], in addition to the calculations presented here, 

identify the proximity of the 𝛾 sheet to a VHS as an important factor in the superconductivity 

of  Sr 2RuO 4 . Simultaneous to this work, calculations in Refs. [66] and [67] have found 

increasing 𝑇𝑐, at least initially, on tuning towards the VHS with strain. That the peak in 𝑇𝑐 

occurs at a similar strain to 𝜀VHS determined from DFT calculations suggests that it coincides 

with the Lifshitz transition. However an alternative possibility is that 𝑇𝑐 of an odd-parity order 

initially increases, thanks to the increase in DOS induced by compression, but then decreases as 

frustration at the Van Hove point becomes more important. This is not the behavior indicated 

by our calculations, where 𝑇𝑐  of 𝑝𝑦  order peaks at 𝜀VHS, but may still be considered a 

qualitative possibility. A further possibility, from Ref. [67], is that compression stabilizes 

competing spin density wave order that cuts off the superconductivity before 𝜀VHS. 

Evidence that the 𝑇𝑐  peak and Lifshitz transition do in fact coincide comes from 

preliminary transport data. In the normal state, inelastic scattering is generally expected to 

scale with the Fermi level density of states, so at nonzero temperature a peak in the resistivity 

at the Lifshitz transition is expected. The resistivity 𝜌𝑥𝑥 at 4.5 K, above the highest 𝑇𝑐, indeed 

peaks in the vicinity of the 𝑇𝑐 peak (Fig. S3). At higher strains it falls rapidly, to below its 



zero-strain value. The calculated Fermi surface density of states ( Fig. 1 C) similarly drops to 

below its zero-strain value beyond 𝜀VHS. The resistivity does not show the sharp increase 

generically expected with transitions into phases involving a gap. Further experiments are 

needed to determine the precise behavior of the normal-state resistivity across the 𝑇𝑐 peak. 

Although important, the issue of whether the peak in 𝑇𝑐 coincides with the Lifshitz 

point does not strongly affect the main conclusions that we draw here, because the substance 

of the comparison of the critical fields of 𝑇𝑐 = 3.4 K and unstrained  Sr 2RuO 4  stands 

regardless. The weak-coupling calculations yield strongly divergent trends for 𝐻𝑐2∥𝑐/𝑇𝑐
2 for 

even- and odd-parity order at all intermediate strains, not only at the VHS, and because this is a 

result of frustration of odd-parity order in the vicinity of the Van Hove point it is unlikely to be 

strongly model-dependent. Also, the arguments for Pauli limiting of 𝐻𝑐2∥𝑎(𝑇 → 0)  are 

unaffected by whether the peak is at the Lifshitz transition. The critical field comparisons clearly 

raise the possibility that the 𝑇𝑐 = 3.4 K superconductivity has an even-parity, spin-singlet 

order parameter. It is difficult to understand in a naive analysis how the critical field anisotropy 

𝛾𝑠 could be only ≈ 3 without Pauli limiting of 𝐻𝑐2∥𝑎. However most current theories of  

Sr 2RuO 4  are two-dimensional and make no predictions for 𝛾𝑠; we believe our observations 

provide strong motivation for extending realistic three-band calculations into the third 

dimension. 

If the 3.4 K superconducting state is even-parity, there are two obvious possibilities, 

both exciting, for its relationship with the superconductivity of unstrained  Sr 2RuO 4 . One is 

that the evolution of the order parameter is continuous between the two states, and 

unstrained  Sr 2RuO 4  is also an even-parity superconductor. The appearance of a first-order 



transition at low temperatures for in-plane fields in both 𝑇𝑐 = 3.4 K ( Fig. 5 A) and unstrained  

Sr 2RuO 4  [27] also argues for this possibility. However in this case a substantial body of 

experimental evidence [30] for triplet, chiral order would require alternative explanation. The 

evidence for chirality could be accommodated by a spin-singlet state, 𝑑𝑥𝑧 ± 𝑖𝑑𝑦𝑧 [68]. This 

order parameter has horizontal line nodes, which requires interplane pairing, and would be 

surprising in such a highly two-dimensional material as Sr 2RuO 4.  However it would, again, be 

useful to extend calculations into the third dimension so that it could be compared on an equal 

footing with the more standard candidate order parameters based on intraplane pairing. The 

other possibility is that there is a transition at an intermediate strain between odd- and 

even-parity states. At such a transition a kink, possibly weak, is expected in 𝑇𝑐(𝜀𝑥𝑥), and a jump 

in 𝐻𝑐2∥𝑐(𝑇 → 0). An important follow-up experiment therefore is measurement of 𝐻𝑐2∥𝑐 at 

intermediate strains. This has not been done yet because the broadening of the transitions at 

intermediate strains complicates accurate determination of 𝐻𝑐2, and higher-precision sample 

mounting methods may be required. 

Consideration of an odd-to-even-parity transition at intermediate strains is also 

motivated by evidence for interference between the superconductivity of Ru inclusions and 

that of bulk  Sr 2RuO 4 , and for hysteresis and switching behavior in Ru/ Sr 2RuO 4  systems. 

The possible interference appears as a sharp drop in the critical current 𝐼𝑐 of Pb/Ru/ Sr 2RuO 4  

junctions at 𝑇𝑐 of  Sr 2RuO 4  [69, 70], which has been interpreted as an onset of phase 

frustration at the Ru/SRO interface. However it could perhaps also be explained by appearance 

of an odd-parity/even-parity interface around the Ru inclusion. Similarly, hysteretic 𝐼𝑐 has 

been seen in  Sr 2RuO 4 /Cu/Pb [18], Nb/Ru/ Sr 2RuO 4  [71], and Pb/Ru/ Sr 2RuO 4  [70] 



junctions, and microbridges of  Sr 2RuO 4  with Ru inclusions [72]. The former two also 

showed time-dependent switching noise. All these results have been interpreted as motion of 

𝑝𝑥 + 𝑖𝑝𝑦/𝑝𝑥 − 𝑖𝑝𝑦  domain walls, however even/odd domain walls appear to be a viable 

alternative possibility. 

Our observations also give cause for optimism concerning the prospects of finding 

superconductivity in biaxially strained thin films: the factor-of-twenty 𝐻𝑐2∥𝑐  enhancement 

corresponds to a factor of 4.5 reduction in the coherence length, considerably reducing the 

disorder constraint for unconventional superconductivity. Biaxial lattice expansion preserves 

tetragonal symmetry and induces Lifshitz transitions at the 𝑋  and 𝑌  Van Hove points 

simultaneously, and so may induce qualitatively different superconductivity than tuning to a 

single Van Hove point with uniaxial pressure. 

Finally, our results provide strong motivation for extending the application of 

piezoelectric-based strain tuning to other materials. In this work we have demonstrated that 

compressions up to ~1% are possible, with in situ tunability and good strain homogeneity. The 

fact that we have achieved a factor of 2.3 increase of 𝑇𝑐 of an unconventional superconductor 

points the way to substantial tuning of properties of other material classes as well.  

 

 

  Materials and Methods 

 Relativistic DFT electronic structure calculations were performed using the 
full-potential local orbital FPLO code [73, 74, 75], version fplo14.00-49. For the 
exchange-correlation potential, within the local density (LDA) and the the general gradient 
approximation (GGA) the parametrizations of Perdew-Wang [76] and Perdew-Burke-Ernzerhof 
[77] were chosen, respectively. The spin-orbit coupling (SOC) was treated non-perturbatively 
solving the four component Kohn-Sham-Dirac equation [78]. Initial calculations were performed 
on 8000 𝑘-points (20×20×20 mesh), both in the LDA and GGA approximations, with and 



without SOC, and with and without apical oxygen relaxation. All these calculations gave similar 

results, with the calculated 𝜀VHS  between -0.012 (GGA + relaxation) and -0.009 

(LDA+SOC+relaxation). However proximity of the VHS to the Fermi level meant that 

convergence to within 3% of the calculated energy of the VHS to 𝐸𝐹 required a higher density 

of 𝑘-points, so LDA+SOC+relaxation calculations were then carried out on a mesh of 343,000 
𝑘-points (70x70x70 mesh, 44766 points in the irreducible wedge of the Brillouin zone), placing 

𝜀VHS at -0.0075. 
Although we believe that using experimentally determined structural parameters for 

unstrained  Sr 2RuO 4  (as described in the main text) is the most natural starting point for 
the calculations, we also checked for the effect of fully relaxing the structure in the local density 
approximation. That relaxation only slightly reduced the cell volume (by 2.7%), preserved the 
𝑐/𝑎 ratio to within 0.1% and led to an increase of only 0.001 in 𝜀𝑉𝐻𝑆, so we are confident that 
use of a relaxed structure gives no substantial systematic change compared to use of the 
experimental one. 

The pressure apparatus is based on that described in Ref. [43], however there are a few 
key modifications that merit mention here. (1) The piezoelectric actuators were 18 mm-long 
Physik Instrumente PICMA linear actuators. (2) The displacement sensor is a parallel-plate 
capacitor, in place of the strain gauge described in Refs. [37] and [43]. The data in this work 
suggest that the strains determined in Ref. [37] are ≈35% too low. One very likely contribution 
to this error is the mechanical resistance imposed by the strain gauge on the motion of the 
original apparatus. Temperature shifts in the gauge coefficient of the strain gauge may also 
contribute. Capacitive sensors are less affected by field and temperature, and impose no 
mechanical resistance, so we have more confidence in the strains reported in this work. (3) The 
thermal contraction foils have been eliminated, allowing the core of the apparatus to be made 
as a single piece. The longer actuators have more than sufficient range to overcome differential 
thermal contraction between the sample and apparatus. 

When mounting samples, a small voltage is often applied to the actuators to move the 
sample mount points slightly further apart. When this voltage is later released the sample is 
placed under modest compression. This step reduces the risk that the sample will break during 
cooling, for example if temperature inhomogeneity in the apparatus places the sample under 
inadvertent tension. 

To estimate the strain applied to a sample, two pieces of information are required. The 
first is the origin of the strain scale, the point where the sample is under zero strain. In Ref. [37] 
it was determined that 𝑇𝑐  of  Sr 2RuO 4  is minimum within experimental error at zero 
strain, so for most samples the origin can be identified as the minimum in 𝑇𝑐. Samples 1 and 4 
broke during cooling, and could be compressed by closing the crack, but not tensioned. The 
process of re-engaging the two ends can be gradual, e.g. if the two faces of the crack do not 
match perfectly, so zero strain cannot be reliably identified by attempting to locate a precise 
point where 𝑇𝑐(𝜀𝑥𝑥) starts to change. Instead, a quadratic fit was made to the 𝑇𝑐(𝜀𝑥𝑥) curve 
over a temperature range near but above the lowest observed 𝑇𝑐. Zero strain was identified as 
the minimum of the fitted curve, plus 2 ⋅ 10−4 to account for the anomalous flattening of 
𝑇𝑐(𝜀𝑥𝑥) around 𝜀𝑥𝑥 = 0 observed in Ref. [37]. The other piece of information required is an 



effective strained length: the capacitive sensor measures a displacement, and 𝜀𝑥𝑥  is this 
displacement divided by the effective strained length. Deformation of the sample mounting 
epoxy means that the effective strained length is typically ~0.4 mm longer than the exposed 
length of the sample. It is estimated through finite element analysis, as described in Refs. [37] 
and [43]. 

The layers of the epoxy that secure the sample are generally 20–40 𝜇m thick, an 
estimated broad optimum. Thinner layers transmit force to the sample more efficiently (i.e. 
give a shorter effective strained length), while thicker layers reduce stress concentration in the 
epoxy and allow greater tolerance in assembly. The dimensions, calculated effective strained 
length, and estimated 𝜀𝑥𝑥 at the peak in 𝑇𝑐 for each sample are given in [45].  
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Figure  1:  DFT calculation results.  (A) Calculated Fermi surfaces of unstrained  Sr 2RuO 4 

, colored by the Fermi velocity 𝑣𝐹, at zero strain. The three surfaces are labeled 𝛼, 𝛽, and 𝛾. 

A cross-section through 𝑘𝑧 = 0 is also shown. The dashed lines indicate the zone of an 

isolated RuO 2 sheet; in 2D models of  Sr 2RuO 4 , the Van Hove point is located on this zone 

boundary.  (B) Calculated Fermi surfaces at 𝜀𝑥𝑥 = −0.0075.  (C) Calculated total density of 

states against 𝜀𝑥𝑥. 

 Figure  2:  Apparatus and sample configuration. Top: apparatus configuration. Extending 

the outer two piezoelectric actuators tensions the sample, and extending the central actuator 

compresses the sample. Middle: sample configuration. The ends are secured with epoxy. Some 

samples have contacts (shown schematically) for resistivity measurements. Bottom: a 

photograph of sample 3. On top of the sample, mounted on a flexible cantilever, are concentric 

coils used for measuring magnetic susceptibility. 

 

 



Figure  3:   Susceptibility against temperature. Top: real part of the susceptibility 𝜒 against 

temperature for sample 1, at various 𝜀𝑥𝑥. No normalizations or offsets are applied to the 

curves. Middle and bottom: same, for sample 3. 

 

Figure  4:   Tc against strain for samples 1, 3, and 5. The points are the midpoints (50% 

levels) of the transitions shown in Fig. 3 , and the lines are the 20 and 80% levels, giving a 

measure of the transition width. The strain scales have been normalized. We estimate an 

uncertainty of 0.04×10-2 on the determination of zero strain of each sample, and the strain at 

the peak in Tc is determined by averaging independent determinations from four samples to be 

(−0.60 ± 0.06) × 10−2. 

 The flat region around 𝜀𝑥𝑥 = 0 for sample 1 is an artefact: the sample broke during 

cool-down, meaning that tensile strain could not be applied, and a compressive displacement 

was required for it to re-engage. 

 

Figure  5:   Hc2 against temperature.  (A) 𝐻𝑐2∥𝑎 and 𝐻𝑐2∥𝑐 against temperature for 

sample 4, compressed to the peak in 𝑇𝑐. 𝐻𝑐2∥𝑎 was measured with both field and 

temperature ramps, and found to be hysteretic below ~1.8 K (upper inset).  Lower inset: 

angle dependence of 𝐻𝑐2 at 990 mK,  confirming the field alignment. 𝜃 is the angle in the 

𝐚-𝐜 plane, and 𝜃 = 0 the field angle at which the 𝐻𝑐2∥𝑎 data were collected.  (B) Raw data 

for 𝜒′(𝑇) of sample 4 at various 𝜀𝑥𝑥. The 𝑦 axis  is the mutual inductance of the 

measurement coils.  (C) Measured 𝜒′(𝑇) at the peak in 𝑇𝑐, and at fields in 0.1 T increments 

between 0 and 1.5 T.  (D) Data for 𝐻𝑐2∥𝑐 of an unstrained  Sr 2RuO 4 sample with slightly 



sub-optimal Tc, from Ref. [48]. 

 

Figure  6:  Weak-coupling calculations: Tc versus strain. The bandwidth and 𝑈/𝑡 were set 

to reproduce the experimental values of 𝑇𝑐(0) = 1.5 K, and 𝑇𝑐(𝜀VHS)~3.4 K. 𝑝𝑥 ± 𝑖𝑝𝑦 and 

𝑑𝑥2−𝑦2 are irreducible representations of the 𝜀𝑥𝑥 = 0 (i.e. tetragonal) lattice. For 𝜀𝑥𝑥 ≠ 0, 

𝑝𝑥 ± 𝑖𝑝𝑦 is resolved into separate representations 𝑝𝑥 and 𝑝𝑦, and 𝑑𝑥2−𝑦2 becomes 

𝑑𝑥2−𝑦2 + 𝑠. 

Figure  7:   Weak-coupling calculations: order parameters. Top: The odd-parity order 

parameter at 𝜀 = 0 and 𝜀 ≈ 𝜀VHS; the VHS is reached at (0, 𝜋). The width of the traces is 

proportional to the energy gap, and the color indicates the phase. For 𝜀𝑥𝑥 ≠ 0, 𝑝𝑥 ± 𝑖𝑝𝑦 is no 

longer an irreducible representation of the lattice, so the 𝑝𝑦 representation, the favoured 

order parameter for 𝜀𝑥𝑥 < 0, is shown instead. Bottom: even-parity order, at 𝜀 = 0 and 𝜀 ≈

𝜀VHS. 

  

 

 

Figure  8:   Weak-coupling calculations: 𝑯𝒄𝟐∥𝒄/𝑻𝒄
𝟐 versus strain. The results are normalized 

to the 𝐻𝑐2∥𝑐/𝑇𝑐
2 calculated at zero strain. 
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