39 research outputs found

    Measuring coherence of quantum measurements

    Full text link
    The superposition of quantum states lies at the heart of physics and has been recently found to serve as a versatile resource for quantum information protocols, defining the notion of quantum coherence. In this contribution, we report on the implementation of its complementary concept, coherence from quantum measurements. By devising an accessible criterion which holds true in any classical statistical theory, we demonstrate that noncommutative quantum measurements violate this constraint, rendering it possible to perform an operational assessment of the measurement-based quantum coherence. In particular, we verify that polarization measurements of a single photonic qubit, an essential carrier of one unit of quantum information, are already incompatible with classical, i.e., incoherent, models of a measurement apparatus. Thus, we realize a method that enables us to quantitatively certify which quantum measurements follow fundamentally different statistical laws than expected from classical theories and, at the same time, quantify their usefulness within the modern framework of resources for quantum information technology.Comment: close to published versio

    Quantum Simulation of single-qubit thermometry using linear optics

    Full text link
    Standard thermometry employs the thermalisation of a probe with the system of interest. This approach can be extended by incorporating the possibility of using the non-equilibrium states of the probe, and the presence of coherence. Here, we illustrate how these concepts apply to the single-qubit thermometer introduced by Jevtic et al. by performing a simulation of the qubit-environment interaction in a linear-optical device. We discuss the role of the coherence, and how this affects the usefulness of non-equilibrium conditions. The origin of the observed behaviour is traced back to the propensity to thermalisation, as captured by the Helmholtz free energy.Comment: 6 pages, 6 figure

    Speed of qubit states during thermalisation

    Full text link
    Classifying quantum states usually demands to observe properties such as the amount of correlation at one point in time. Further insight may be gained by inspecting the dynamics in a given evolution scheme. Here we attempt such a classification looking at single-qubit and two-qubit states at the start of thermalisation with a heat bath. The speed with which the evolution starts is influenced by quantum aspects of the state, however, such signatures do not allow for a systematic classification

    Monitoring dispersive samples with single photons: the role of frequency correlations

    Get PDF
    The physics that governs quantum monitoring may involve other degrees of freedom than the ones initialised and controlled for probing. In this context we address the simultaneous estimation of phase and dephasing characterizing a dispersive medium, and we explore the role of frequency correlations within a photon pair generated via parametric down-conversion, when used as a probe for the medium. We derive the ultimate quantum limits on the estimation of the two parameters, by calculating the corresponding quantum Cram\'er-Rao bound; we then consider a feasible estimation scheme, based on the measurement of Stokes operators, and address its absolute performances in terms of the correlation parameters, and, more fundamentally, of the role played by correlations in the simultaneous achievability of the quantum Cram\'er-Rao bounds for each of the two parameters.Comment: to appear in Quantum Measurements and Quantum Metrolog

    Measuring the time-frequency properties of photon pairs: a short review

    Full text link
    Encoding information in the time-frequency domain is demonstrating its potential for quantum information processing. It offers a novel scheme for communications with large alphabets, computing with large quantum systems, and new approaches to metrology. It is then crucial to secure full control on the generation of time-frequency quantum states and their properties. Here, we present an overview of the theoretical background and the technical aspects related to the characterization of time-frequency properties of two-photon states. We provide a detailed account of the methodologies which have been implemented for measuring frequency correlations and for the retrieval of the full spectral wavefunction. This effort has benefited enormously from the adaptation of classical metrology schemes to the needs of operating at the single-photon level

    Assessing frequency correlation through a distinguishability measurement

    Full text link
    The simplicity of a question such as wondering if correlations characterize or not a certain system collides with the experimental difficulty of accessing such information. Here we present a low demanding experimental approach which refers to the use of a metrology scheme to obtain a conservative estimate of the strength of frequency correlations. Our testbed is the widespread case of a photon pair produced per downconversion. The theoretical architecture used to put the correlation degree on a quantitative ground is also described

    Multiparameter quantum estimation of noisy phase shifts

    Get PDF
    Phase estimation is the most investigated protocol in quantum metrology, but its performance is affected by the presence of noise, also in the form of imperfect state preparation. Here we discuss how to address this scenario by using a multiparameter approach, in which noise is associated to a parameter to be measured at the same time as the phase. We present an experiment using two-photon states, and apply our setup to investigating optical activity of fructose solutions. Finally, we illustrate the scaling laws of the attainable precisions with the number of photons in the probe state

    Geometrical bounds on irreversibility in open quantum systems

    Get PDF
    Clausius inequality has deep implications for reversibility and the arrow of time. Quantum theory is able to extend this result for closed systems by inspecting the trajectory of the density matrix on its manifold. Here we show that this approach can provide an upper and lower bound to the irreversible entropy production for open quantum systems as well. These provide insights on the thermodynamics of the information erasure. Limits of the applicability of our bounds are discussed, and demonstrated in a quantum photonic simulator

    Quantum sensors for dynamical tracking of chemical processes

    Full text link
    Quantum photonics has demonstrated its potential for enhanced sensing. Current sources of quantum light states tailored to measuring, allow to monitor phenomena evolving on time scales of the order of the second. These are characteristic of product accumulation in chemical reactions of technologically interest, in particular those involving chiral compounds. Here we adopt a quantum multiparameter approach to investigate the dynamic process of sucrose acid hydrolysis as a test bed for such applications. The estimation is made robust by monitoring different parameters at once

    Bridging thermodynamics and metrology in non-equilibrium Quantum Thermometry

    Get PDF
    Single-qubit thermometry presents the simplest tool to measure the temperature of thermal baths with reduced invasivity. At thermal equilibrium, the temperature uncertainty is linked to the heat capacity of the qubit, however the best precision is achieved outside equilibrium condition. Here, we discuss a way to generalize this relation in a non-equilibrium regime, taking into account purely quantum effects such as coherence. We support our findings with an experimental photonic simulation.Comment: 7 pages, 4 figure
    corecore