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Bridging thermodynamics and metrology in nonequilibrium quantum thermometry
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Single-qubit thermometry presents the simplest tool to measure the temperature of thermal baths with reduced
invasivity. At thermal equilibrium, the temperature uncertainty is linked to the heat capacity of the qubit, however,
the best precision is achieved outside the equilibrium condition. Here, we discuss a way to generalize this relation
in a nonequilibrium regime, taking into account purely quantum effects such as coherence. We support our
findings with an experimental photonic simulation.
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I. INTRODUCTION

Identifying strategies for improving the measurement pre-
cision by means of quantum resources is the purpose of
quantum metrology [1–3]. In particular, through the quantum
Cramér-Rao bound (QCRB), it sets ultimate limits on the best
accuracy attainable in the estimation of unknown parameters
even when the latter are not associated with observable quan-
tities. These considerations have attracted increasing attention
in the field of quantum thermodynamics, where an accurate
control of the temperature is highly demanding [4–8]. Besides
the emergence of primary and secondary thermometers based
on precisely machined microwave resonators [9,10], recent
efforts have been made aiming at measuring temperature at
even smaller scales, where nanosize thermal baths are highly
sensitive to disturbances induced by the probe [11–17]. Some
paradigmatic examples of nanoscale thermometry involve
nanomechanical resonators [18], quantum harmonic oscilla-
tors [19], or atomic condensates [20–22] (also in conjunction
with the estimation of the chemical potential [23]). In this
context the analysis of quantum properties needs to be taken
into account in order to establish, and eventually enhance,
metrological precision [24–29].

In a conventional approach to thermometry, an external
bath B at thermal equilibrium is typically indirectly probed
via an ancillary system, the thermometer S , that is placed
into a weak interaction with the former. Assuming hence that
the thermometer reaches the thermal equilibrium configura-
tion without perturbing B too much, the Einstein theory of
fluctuations (ETF) can be used to characterize the sensitivity
of the procedure in terms of the heat capacity of S which
represents its thermal susceptibility to the perturbation im-
posed by the bath [30–33]. Since the latter is an equilibrium
property, one should not expect it to hold in nonequilibrium
regimes. However, thermometry schemes that do not need a
full thermalization of the probe have been recognized to offer

higher sensitivities in temperature estimations [34], as also
recognized by studies of the strong-coupling regime with the
bath [35]. Thus, if, on the one hand, the QCRB can still be
used as a proper tool to gauge the measurement uncertainty
on the bath temperature, on the other hand, establishing a
direct link between this approach and the thermodynamic
properties of the probe is still an open question. Furthermore,
the advantages pointed out in Ref. [34] are conditional on
precisely addressing the probe during its evolution, a task
which might be demanding in real experiments [28]. Here,
S is assumed to be a quantum system characterized by a local
Hamiltonian H that, after being initialized into some proper
input state ρ(0), weakly interacts for some time τ with the
bath B of the assigned, but unknown, temperature T , before
been measured. In this setting, we compare the performances
of optimal estimation procedures with standard thermometry
approaches: The temperature parameter T is recovered by
only monitoring the energy variation on S by its interaction
with the bath. Then we derive a universal inequality that
links metrological and thermodynamic quantities, ultimately
discussing the optimal condition for its saturation.

In particular, for the case where S is a two-level (qubit)
system, we show that optimality can be achieved for a broad
class of configurations that also include out-of-equilibrium
scenarios. A quantum photonic experiment simulating the
S-B thermal coupling confirms our results, giving indications
for optimal measurements for any platform.

II. QCRB vs ETF

In a conventional thermometry approach, the bath temper-
ature is recovered by measuring the mean energy ET (τ ) =
tr[Hρ(τ )] of S and inverting its functional dependence upon
T , ρ(τ ) being the reduced density matrix describing the
state of S after its interaction with B. In the absence of an
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extra source of experimental noise, a simple application of
the error propagation formula reveals that, in this scenario,
the associated mean-square error (MSE) of the estimation
procedure can reach the value

�2T = �2ET (τ )

MC2
T (τ )

, (1)

where M is the number of measurements one performs on
the probe. In this expression, explicitly derived in the Sup-
plemental Material [36], �2ET (τ ) = tr{[H − ET (τ )]2ρ(τ )}
is the variance of H on ρ(τ ) which we use to estimate

the uncertainty associated with the mean energy measure,
and CT (τ ) = ∂T ET (τ ) is the partial derivative of ET (τ ) with
respect to T . The latter quantity represents the energetic
susceptibility of the system to the perturbation imposed by
the bath: Since energy is only exchanged in the form of heat,
it coincides with its heat capacity (HC), even in and out of
thermal equilibrium [30–32].

The accuracy level represented by (1) is arguably not the
best for which one can hope. As a matter of fact, it cannot
be excluded that different estimation procedures could be de-
vised based on generalized positive-operator-valued measures
(POVMs) on S which possibly allow one to better recover
the value of T . The ultimate performances achievable by such
procedures are set by the QCRB [2,3] which, irrespectively of
the specific form of the probe-bath coupling, establishes the
following inequality,

�2T � 1

MQT (τ )
, (2)

where QT (τ ) is the quantum Fisher information (QFI), a
functional which only depends on ρ(τ )—explicitly this is
given by Q

(τ )
T = tr[LT ∂T ρ(τ )], with LT being the symmetric

logarithmic derivative of the problem, i.e., the self-adjoint
operator which satisfies the identity ∂T ρ(τ ) = 1/2{LT , ρ(τ )},
with {· · · , · · · } being the anticommutator [3].

Applying (2) to (1), we can hence draw the following
universal relation,

QT (τ ) � C2
T (τ )

�2ET (τ )
, (3)

that links together the generalized HC of S , its energy spread
�2ET (τ ), and the associated QFI functional. Equation (3)
is saturated when ETF holds, i.e., when τ is sufficiently
long to guarantee the thermalization condition, i.e., when S
reaches the equilibrium state represented by the thermal Gibbs
state ρ

(eq)
T = e−H/kBT /Z , with Z = tr[e−H/kBT ] the partition

function of the system. In this scenario, in fact, one has [37,38]
(see Supplemental Material [36])

Q
(eq)
T = �2E

(eq)
T

k2
BT 4

, C
(eq)
T = �2E

(eq)
T

kBT 2
, (4)

which can be combined to give Q
(eq)
T = [C (eq)

T ]
2
/�2E

(eq)
T . Ac-

cordingly, one can conclude that, when the thermometer and
the bath reach thermal equilibrium, the standard thermometry
procedure which derives T from the mean energy of S is op-
timal. We point out that Eq. (4) also establishes a direct linear
dependence between QFI and the associated capacity, i.e.,

Q
(eq)
T = C

(eq)
T

/
(kBT 2), (5)

which, as we shall clarify in the following, is a peculiar
property of Gibbs states.

III. THE QUBIT MODEL

Let us now focus on the special case where the probe sys-
tem S is a qubit, with a specific Hamiltonian H = h̄ω σz/2,
and B is a bosonic thermal bath (hereafter σz being the third
Pauli operator). As in Refs. [15,17–19,34] we describe the
temporal evolution of S by assigning a Markovian master
equation (MME), which we write in the interaction pic-
ture representation as ρ̇(t ) = ∑

j=± γjDj [ρ(t )]. In this ex-
pression, D− and D+ are Gorini-Kossakowski-Sudarshan-
Lindblad (GKSL) generators having, respectively, the qubit
ladder matrices σ− = |0〉〈1| and σ+ = |1〉〈0| as corresponding
Lindblad operators (hereafter |0〉 and |1〉 identify respec-
tively the excited and the ground state of the single-qubit
thermometer). The parameters γ− = γ (N + 1) and γ+ = γN

instead set the temperature dependence of the system dy-
namics through the Planck number N = 1/(eh̄ω/kBT − 1) ∈
[0,∞] that counts the average number of resonant bosonic
excitations present in the bath, γ being a positive rate that
fixes the time scale of the problem. By direct integration
of the MME, one can easily verify that the state of S at
time τ can be expressed as ρ(τ ) = 1

2 [1 + �r (τ ) · �σ ] with a
Bloch vector �r (τ ) having Cartesian components equal to
r1,2(τ ) = r1,2(0)e−γ (2N+1)τ/2 and r3(τ ) = r3(0)e−γ (2N+1)t −
(1 − e−γ (2N+1)τ )/(2N + 1). This corresponds to an evolution
induced by generalized amplitude damping (GAD) channels
�τ [39] which, irrespectively from the specific choice of
ρ(0), will let the system asymptotically relax to a unique
fixed point with the Bloch vector �r (eq) = [0, 0,−1/(2N + 1)]
which represents the system thermal Gibbs state ρ

(eq)
T . In this

long-time limit, our model will behave as anticipated in the
previous section, saturating the inequality (3), i.e., allowing
one to recover the QCRB via ETF—as well as fulfilling (5).
What about the finite-time τ regime? For the present model
the heat capacity CT (τ ) and the energy spread �2ET (τ ) can
be easily shown to be equal to

CT (τ ) = h̄ω

2
∂T r3(τ ), �2ET (τ ) =

(
h̄ω

2

)2

[1 − r2
3 (τ )].

(6)

Furthermore, as discussed in the Supplemental Material [36],
simple algebra allows us to express the corresponding QFI as

QT (τ ) = [∂T r (τ )]2

1 − r2(τ )
+ r2(τ )[∂T θ (τ )]2, (7)

where r (τ ) and θ (τ ) are, respectively, the length and the polar
angle of the Bloch vector �r (τ ), the azimuthal angle being
a constant of motion and playing no role in the derivation.
The first term on the right-hand side of Eq. (7) describes
the rearrangement of the population of the probe during its
interaction with the reservoir, while the other one accounts
for quantum coherence contributions which nullify in the
asymptotic limit where γ τ → ∞ (the first term converging
instead to Q

(eq)
T ). By direct substitution of these expressions

into (3), one can verify that for generic choices of τ and of
the input state ρ(0) the inequality will be strict—see Fig. 1.
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FIG. 1. Plots of the nonequilibrium QFI QT (τ ) (solid purple curves) and of the quantity C2
T (τ )/�2ET (τ ) (dashed red curves) appearing

on the right-hand side of Eq. (3) and which determines the accuracy of the estimation procedure based on direct energy measurement of the
probe S . In all plots we assume the input state ρ(0) of S to be pure with zero azimuthal angle and with the polar angle given by θ (0) = 0
(excited state) for the first panel; θ (0) = π/4 for the second; θ (0) = π/2 for the third; and θ (0) = 0 (excited state) for the last panel. The
temperature T is set equal to 2 in units of h̄ω/kB while the time is measured in units of γ −1. Notice that when the system is initially prepared
in a diagonal state, i.e., for θ (0) = 0 and θ (0) = π , the bound (3) is saturated and the two curves coincide.

A notable exception, however, is obtained when the input
state is diagonal into the energy basis of H , i.e., when r1,2(0)
both nullify [or equivalently when, independently from the
choice of ρ(0), the coherence terms of ρ(τ ) are removed by
a decoherence process that acts on S before the measurement
stage]. In this special case the system remains diagonal along
the full trajectory and Eq. (7) reduces to QT (τ ) = [∂T r3(τ )]2

1−r2
3 (τ )

.
Accordingly, (3) becomes an identity for all choices of the
interaction time τ , implying that the standard thermometry
scheme which recovers T from just energy measures is op-
timal. Notice that in this scenario, ρ(τ ) has not reached the
thermal equilibrium configuration so ETF arguments can-
not be applied: This is made evident by the fact that even
though (3) saturates, QT (τ ) and CT (τ ) cannot yet be linearly
connected as in (5) unless one introduces an effective, yet
fictitious, rescaling of the proportionality coefficient appear-
ing on the right-hand side. Similar conclusions have been
drawn dealing with the role of quantum coherence when
thermalization is prevented by a strong coupling between S
and B [35].

The numerical plots of Fig. 1 show the relations between
the left- and right-hand-side terms of (3). In agreement with
the finding of Ref. [34], we notice that in general the QFI
reaches higher values (corresponding to better estimation
accuracies) for finite (possibly dependent on T ) values of τ .
Furthermore, after having fixed the parameter τ at its best, the
absolute best performance is obtained when initializing the
qubit into the ground state (see the last panel of the figure)—
we have confirmed this result by numerical optimization
of (7), as shown in detail in the Supplemental Material [36].

The first and last panels of Fig. 1 explicitly show the saturation
of Eq. (3) for diagonal states at all times τ , while for a generic
input this is only possible when τ → ∞ since the system
asymptotically thermalizes.

IV. QUANTUM PHOTONIC SIMULATION

We have simulated the evolution of the probing qubit
S under the action of the thermal bath via a pho-
tonic implementation of the associated GAD channel �t

[40–44], in order to extract the experimental uncertainties on
temperature estimation. For this purpose we have exploited
the Kraus representation of the map ρ(τ ) = �τ [ρ(0)] =∑4

i=1 Kiρ(0)Ki
†, where Ki’s are four Kraus operators:

The first two, i.e., K1 =
√

1+N
1+2N

(e−γ (2N+1)τ/2|0〉〈0| + |1〉〈1|),
K2 =

√
1+N

1+2N

√
1 − e−γ (2N+1)τ |1〉〈0| being responsible for de-

cay from the excited |0〉 to the ground |1〉 state, represent
the action of an amplitude damping (AD) map, and the

second two, i.e., K3 =
√

N
2N+1 (|0〉〈0| + e−γ (2N+1)τ/2|1〉〈1|),

K4 =
√

N
2N+1

√
1 − e−γ (2N+1)τ |0〉〈1|, describing the absorp-

tion events, represent instead an inverse amplitude damping
(IAD) map. The previous decomposition depicts the GAD as
a weighted sum of two different processes, an AD and an

IAD with weights respectively equal to
√

N+1
2N+1 and

√
N

2N+1 .

This last property is crucial for implementing a quantum
optical simulation of the process: After reproducing the AD
and the IAD channel through a succession of optical logic
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FIG. 2. Quantum simulation via quantum photonics. Upper
panel: Quantum circuits for the implementation of the AD (k = 0),
and of the IAD (k = 1) channels [41]. The circuital elements are
as follows: X and Z, that implement the Pauli rotations σx and σz;
CZ, representing a controlled-σz gate; R(φ) is a rotation by an angle
φ around the y axis. The measurements are performed in the com-
putational basis. Lower panel: Experimental scheme. One photon is
employed to simulate the single-qubit thermometer, while a second
one is used as an ancilla to simulate the system-bath interaction. The
computational basis is encoded in the vertical and the horizontal
polarizations of the single photons. The single-qubit gates in the
upper panel are implemented by means of half-wave plates (HWPs),
while the CZ is realized by a partially polarizing beam splitter. More
details are given in the Supplemental Material [36].

gates, it is possible to reconstruct the full density matrix
simply by doing a proper weighted sum of the outputs of
the two channels, as depicted in Fig. 2 [28]. Specifically,
an AD acting on a qubit S can be formally simulated by
coupling the system with an ancilla A and doing the following
operations:

(1) A controlled-σz gate, with S as the control, embedded
between two rotations R(φ) acting on A [45–47]. The rota-
tions are performed around the y axis and the angle φ has
to be chosen in order to mimic the damping factor of the
Kraus decomposition of the map, and in our case it is such
that e−γ (2N+1)τ = cos2(2φ) [28,48].

(2) A projective measurement on the computational basis
of A, conditioning a σx gate on S (see Fig. 2).

The above-mentioned procedure works also for the IAD,
except for two additional σx and σz rotations in the preparation
and postprocessing of the state. An experimental implemen-
tation is obtained by associating each logical gate with its
corresponding element in the optical table, as explained in
Fig. 2.

The mean value of the energy and the temperature uncer-
tainty are inferred by performing a measure on the Hamil-
tonian eigenbasis of S , a purpose that in practice is realized
through experimental counts of the populations [49]. For any
simulated time in the experiment, the expectation value of
the energy is given by 〈E〉 = (n0 − n1)/2(n0 + n1), where
ni corresponds to the measured count rate of the state i. Its
uncertainty is evaluated as �2E = n0n1/(n0 + n1)3; this is
an estimation of the energy spread �2ET (τ ). Temperature
uncertainties (at each estimation round) are then obtained as
�2T = �2E/(∂T E)2. The results are summarized in Fig. 3,
in which we compare the experimental uncertainties on the
temperature with the related QCRB.

V. CONCLUSIONS

At thermal equilibrium, the ETF establishes a neat link
between the temperature fluctuations �T , and the thermal
susceptibility of the system corresponding to the heat capacity.
We have investigated if similar relations can be recovered in
nonequilibrium regimes. For a single-qubit thermometer, we
have shown this is not possible when coherence is present
in the initial state of the probe: The QFI functional gauging
the optimal accuracy threshold contains additional contribu-
tions. However, for diagonal input states the optimality of
standard measurement procedure is restored and allows one
to saturate the QCRB with conventional thermometry based
on energy measurements. This peculiar effect is probably
related with the small number of degrees of freedom char-
acterizing the thermometer we used. We suspect that as the
dimensionality of the probing system increases, optimal ther-
mometry could only be achieved by more complex measure-
ment procedures which, even in the absence of off-diagonal
terms, include the study of the full statistic of the energy
measures.

FIG. 3. Comparison between the experimental errors �T , and metrological figures of merit related to the temperature parameter.
In the three panels, the solid purple curves represent the theoretical QCRB, the dashed orange curve represents the theoretical CRB, and
the purple points represent the experimental uncertainties on the temperature. In the left panel, we confirm that the ground state allows one to
reach the greatest sensitivity of the single-qubit probe as it permits to reach the lowest value of �T ; in the right panel, we show the behavior
of the probe prepared in the excited state, and we observe a divergence in the QCRB due to the presence of a zero in the QFI—see the first
panel of Fig. 1; in the middle panel, we show the coherent strategy. Here, the experimental uncertainties on the temperature do not reach the
QCRB but they are well captured by its classical counterpart.
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