39 research outputs found

    Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity

    Get PDF

    Effect of varying glucose and glucosamine concentration in vitro on mouse oocyte maturation and developmental competence

    Get PDF
    Published online: 7 November 2012The effects of hyper- and hypo-glycaemic conditions during the in vitro maturation of mouse cumulus–oocyte complexes on developmental competence were examined, with an emphasis on the role of the hexosamine biosynthesis pathway. A low (1 mM) glucose concentration achieved optimal oocyte competence (3-fold higher blastocyst development rate compared with high (30 mM) glucose, P < 0.05). In addition, glucose supplementation during only the first hour after release from the follicle was necessary and sufficient to support oocyte maturation and embryo development to the blastocyst stage. Glucosamine (a known hyperglycaemic mimetic and specific activator of the hexosamine pathway) was able to substitute for glucose during this first hour, indicating that flux through the hexosamine pathway is essential for oocyte competence. In the absence of glucose throughout the maturation period, glucosamine was not able to increase developmental competence, and at higher concentrations (2.5 and 5 mM) had a detrimental effect on MII and blastocyst development rates, compared with controls (P < 0.05). These experiments underscore the importance of glucose metabolic pathways during in vitro maturation and support the concept that excess flux through the hexosamine pathway has detrimental consequences.L. A. Frank, M. L. Sutton-McDowall, D. L. Russell, X. Wang, D. K. Feil, R. B. Gilchrist, and J. G. Thompso

    The Jak2 Inhibitor, G6, Alleviates Jak2-V617F-Mediated Myeloproliferative Neoplasia by Providing Significant Therapeutic Efficacy to the Bone Marrow1

    Get PDF
    We recently developed a Janus kinase 2 (Jak2) small-molecule inhibitor called G6 and found that it inhibits Jak2-V617F-mediated pathologic cell growth in vitro, ex vivo, and in vivo. However, its ability to inhibit Jak2-V617F-mediated myeloproliferative neoplasia, with particular emphasis in the bone marrow, has not previously been examined. Here, we investigated the efficacy of G6 in a transgenic mouse model of Jak2-V617F-mediated myeloproliferative neoplasia. We found that G6 provided therapeutic benefit to the peripheral blood as determined by elimination of leukocytosis, thrombocytosis, and erythrocytosis. G6 normalized the pathologically high plasma concentrations of interleukin 6 (IL-6). In the liver, G6 eliminated Jak2-V617F-driven extramedullary hematopoiesis. With respect to the spleen, G6 significantly reduced both the splenomegaly and megakaryocytic hyperplasia. In the critically important bone marrow, G6 normalized the pathologically high levels of phospho-Jak2 and phospho-signal transducer and activator of transcription 5 (STAT5). It significantly reduced the megakaryocytic hyperplasia in the marrow and completely normalized the M/E ratio. Most importantly, G6 selectively reduced the mutant Jak2 burden by 67%on average, with virtual elimination of mutant Jak2 cells in one third of all treated mice. Lastly, clonogenic assays using marrow stem cells from the myeloproliferative neoplasm mice revealed a time-dependent elimination of the clonogenic growth potential of these cells by G6. Collectively, these data indicate that G6 exhibits exceptional efficacy in the peripheral blood, liver, spleen, and, most importantly, in the bone marrow, thereby raising the possibility that this compound may alter the natural history of Jak2-V617F-mediated myeloproliferative neoplasia
    corecore