86 research outputs found

    The Automated Root Exudate System (ARES): a method to apply solutes at regular intervals to soils in the field.

    Get PDF
    Root exudation is a key component of nutrient and carbon dynamics in terrestrial ecosystems. Exudation rates vary widely by plant species and environmental conditions, but our understanding of how root exudates affect soil functioning is incomplete, in part because there are few viable methods to manipulate root exudates in situ. To address this, we devised the Automated Root Exudate System (ARES), which simulates increased root exudation by applying small amounts of labile solutes at regular intervals in the field. The ARES is a gravity-fed drip irrigation system comprising a reservoir bottle connected via a timer to a micro-hose irrigation grid covering c. 1 m2; 24 drip-tips are inserted into the soil to 4-cm depth to apply solutions into the rooting zone. We installed two ARES subplots within existing litter removal and control plots in a temperate deciduous woodland. We applied either an artificial root exudate solution (RE) or a procedural control solution (CP) to each subplot for 1 min day-1 during two growing seasons. To investigate the influence of root exudation on soil carbon dynamics, we measured soil respiration monthly and soil microbial biomass at the end of each growing season. The ARES applied the solutions at a rate of c. 2 L m-2 week-1 without significantly increasing soil water content. The application of RE solution had a clear effect on soil carbon dynamics, but the response varied by litter treatment. Across two growing seasons, soil respiration was 25% higher in RE compared to CP subplots in the litter removal treatment, but not in the control plots. By contrast, we observed a significant increase in microbial biomass carbon (33%) and nitrogen (26%) in RE subplots in the control litter treatment. The ARES is an effective, low-cost method to apply experimental solutions directly into the rooting zone in the field. The installation of the systems entails minimal disturbance to the soil and little maintenance is required. Although we used ARES to apply root exudate solution, the method can be used to apply many other treatments involving solute inputs at regular intervals in a wide range of ecosystems

    Understanding of spatial correspondence does not contribute to representational understanding: Evidence from the Model Room and False Belief tasks

    Get PDF
    We examine the longstanding claim that understanding relational correspondence is a general component of representational understanding (Perner, 1991). Two experiments with 175 preschool children located in Norwich, UK examined use of a scale model (DeLoache, 1987) comparing performances on a ‘Copy’ task, measuring abstract spatial arrangement ability, and the False Belief task. Consistent with previous studies, younger children performed well in scale model trials when objects were unique (e.g., one cupboard) but poorly at distinguishing objects using spatial layout (one of three identical chairs). Performance was specifically associated with Copy task but not False Belief performance. Emphasizing the representational relation between model and room was ineffective. We find no evidence for understanding relational correspondence as a general component of representational understanding

    Revisiting hydro-ecological impacts of climate change on a restored floodplain wetland via hydrological / hydraulic modelling and the UK Climate Projections 2018 scenarios

    Get PDF
    The hydro-ecological impacts of 40 UK Climate Projections 2018 scenarios on a restored lowland England river floodplain are assessed using a MIKE SHE / MIKE 11 model. Annual precipitation declines for 60% of scenarios (range: -26%–21%, with small, <5%, declines for the central probability level). Potential evapotranspiration increases for all probability levels except the most extreme, very unlikely, 10% level (range: -4%–43%, central probability 9%–20%) Mean, peak and low river discharges are reduced for all but the extreme 90% probability level. Reduced frequency of bankfull discharge dominates (at least halved for the central probability level). Floodplain inundation declines for over 97% of 320 scenario-events. Winter water table levels still intercept the surface, while mean and summer low levels are reduced. Declines in mean summer floodplain water table levels for the central probability level (0.22 m and 0.28 m for the 2050s and 2080s, respectively) are twice as large as those in the more dynamic riparian area. Declines reach 0.39 m for some 10% probability level scenarios. Simulated hydrological changes differ subtly from a previous assessment using earlier UK climate projections. A soil aeration stress index demonstrates that, under baseline conditions, prolonged high winter floodplain water tables drive long periods of low root-zone oxygen, in turn favouring vegetation communities adapted to waterlogged conditions. Climate change reduces aeration stress and the extent of appropriate conditions for these plant communities in favour of communities less tolerant of wet conditions

    Monitoring extinction risk and threats of the world’s fishes based on the Sampled Red List Index

    Get PDF
    Global biodiversitytargets require us to identify species at risk of extinction and quantify status and trends of biodiversity. The Red List Index (RLI) tracks trends in the conservation status of entire species groups over time by monitoring changes in categories assigned to species. Here, we calculate this index for the world’s fishes in 2010, using a sampled approach to the RLI based on a randomly selected sample of 1,500 species, and also present RLI splits for freshwater and marine systems separately. We further compare specific traits of a worldwide fish list to our sample to assess its representativeness. Overall, 15.1% of species in the sample were estimated to be threatened with extinction, resulting in a sampled RLI of 0.914 for all species, 0.968 in marine and 0.862 in freshwater ecosystems. Our sample showed fishing as the principal threat for marine species, and pollution by agricultural and forestry effluents for freshwater fishes. The sampled list provides a robust representation for tracking trends in the conservation status of the world’s fishes, including disaggregated sampled indices for marine and freshwater fish. Reassessment and backcasting of this index is urgent to check the achievement of the commitments proposed in global biodiversity targets

    Monitoring Extinction Risk and Threats of the World\u27s Fishes Based on the Sampled Red List Index

    Get PDF
    Global biodiversitytargets require us to identify species at risk of extinction and quantify status and trends of biodiversity. The Red List Index (RLI) tracks trends in the conservation status of entire species groups over time by monitoring changes in categories assigned to species. Here, we calculate this index for the world’s fishes in 2010, using a sampled approach to the RLI based on a randomly selected sample of 1,500 species, and also present RLI splits for freshwater and marine systems separately. We further compare specific traits of a worldwide fish list to our sample to assess its representativeness. Overall, 15.1% of species in the sample were estimated to be threatened with extinction, resulting in a sampled RLI of 0.914 for all species, 0.968 in marine and 0.862 in freshwater ecosystems. Our sample showed fishing as the principal threat for marine species, and pollution by agricultural and forestry effluents for freshwater fishes. The sampled list provides a robust representation for tracking trends in the conservation status of the world’s fishes, including disaggregated sampled indices for marine and freshwater fish. Reassessment and backcasting of this index is urgent to check the achievement of the commitments proposed in global biodiversity targets

    Evaluation of a brief pilot nutrition and exercise intervention for the prevention of weight gain in general practice patients

    Full text link
    Objective To pilot-test a brief written prescription recommending lifestyle changes delivered by general practitioners (GPs) to their patients.Design The Active Nutrition Script (ANS) included five nutrition messages and personalised exercise advice for a healthy lifestyle and/or the prevention of weight gain. GPs were asked to administer 10 scripts over 4 weeks to 10 adult patients with a body mass index (BMI) of between 23 and 30 kg m&minus; 2. Information recorded on the script consisted of patients\u27 weight, height, waist circumference, gender and date of birth, type and frequency of physical activity prescribed, and the selected nutrition messages. GPs also recorded reasons for administering the script. Interviews recorded GPs views on using the script.Setting General practices located across greater Melbourne.Subjects and results Nineteen GPs (63% female) provided a median of nine scripts over 4 weeks. Scripts were administered to 145 patients (mean age: 54 &plusmn; 13.2 years, mean BMI: 31.7 &plusmn; 6.3 kg m&minus; 2; 57% female), 52% of whom were classified as obese (BMI &gt;30 kg m&minus; 2). GPs cited &lsquo;weight reduction&rsquo; as a reason for writing the script for 78% of patients. All interviewed GPs (90%, n = 17) indicated that the messages were clear and simple to deliver.Conclusions GPs found the ANS provided clear nutrition messages that were simple to deliver. However, GPs administered the script to obese patients for weight loss rather than to prevent weight gain among the target group. This has important implications for future health promotion interventions designed for general practice.<br /

    Altered litter inputs modify carbon and nitrogen storage in soil organic matter in a lowland tropical forest

    Get PDF
    Soil organic matter (SOM) in tropical forests is an important store of carbon (C) and nutrients. Although SOM storage could be affected by global changes via altered plant productivity, we know relatively little about SOM stabilisation and turnover in tropical forests compared to temperate systems. Here, we investigated changes in soil C and N within particle size fractions representing particulate organic matter (POM) and mineral-associated organic matter (MAOM) after 13 years of experimental litter removal (L−) and litter addition (L+) treatments in a lowland tropical forest. We hypothesized that reduced nitrogen (N) availability in L− plots would result in N-mining of MAOM, whereas long-term litter addition would increase POM, without altering the C:N ratio of SOM fractions. Overall, SOM-N declined more than SOM-C with litter removal, providing evidence of N-mining in the L− plots, which increased the soil C:N ratio. However, contrary to expectations, the C:N ratio increased most in the largest POM fraction, whereas the C:N ratio of MAOM remained unchanged. We did not observe the expected increases in POM with litter addition, which we attribute to rapid turnover of unprotected SOM. Measurements of ion exchange rates to assess changes in N availability and soil chemistry revealed that litter removal increased the mobility of ammonium-N and aluminium, whereas litter addition increased the mobility of nitrate-N and iron, which could indicate SOM priming in both treatments. Our study suggests that altered litter inputs affect multiple processes contributing to SOM storage and we propose potential mechanisms to inform future work

    Revisiting hydro-ecological impacts of climate change on a restored floodplain wetland via hydrological/hydraulic modelling and the UK Climate Projections 2018 scenarios

    Get PDF
    The hydro-ecological impacts of 40 UK Climate Projections 2018 scenarios on a restored lowland England river floodplain are assessed using a MIKE SHE / MIKE 11 model. Annual precipitation declines for 60% of scenarios (range: -26%–21%, with small, <5%, declines for the central probability level). Potential evapotranspiration increases for all probability levels except the most extreme, very unlikely, 10% level (range: -4%–43%, central probability 9%–20%) Mean, peak and low river discharges are reduced for all but the extreme 90% probability level. Reduced frequency of bankfull discharge dominates (at least halved for the central probability level). Floodplain inundation declines for over 97% of 320 scenario-events. Winter water table levels still intercept the surface, while mean and summer low levels are reduced. Declines in mean summer floodplain water table levels for the central probability level (0.22 m and 0.28 m for the 2050s and 2080s, respectively) are twice as large as those in the more dynamic riparian area. Declines reach 0.39 m for some 10% probability level scenarios. Simulated hydrological changes differ subtly from a previous assessment using earlier UK climate projections. A soil aeration stress index demonstrates that, under baseline conditions, prolonged high winter floodplain water tables drive long periods of low root-zone oxygen, in turn favouring vegetation communities adapted to waterlogged conditions. Climate change reduces aeration stress and the extent of appropriate conditions for these plant communities in favour of communities less tolerant of wet conditions

    Strivers vs skivers: Class prejudice and the demonisation of dependency in everyday life

    Get PDF
    This paper focuses on the moral dimension of everyday lives, using original empirical material about the judgments we make about others to explore and understand the contemporary nature of class prejudice. In doing so, we pay attention to the relationship between class prejudice and other forms of stigma and discrimination by exploring the complex (re)alignment of associations between different social groups (including working class people, disabled people, asylum seekers) in processes of ‘othering’ and exclusion. The research highlights the potential shared interest of groups who are demonised for being ‘in need’ to challenge the contemporary hegemony of the individualised ethic of self-interest which is producing a process of de-socialisation in which the importance of values such as care, compassion and social responsibility risk becoming casualties with inevitable consequences for social cohesion. Rather, the paper concludes by arguing for a re-socialisation of politics that recognises the structural causes of inequalities and which values and promotes understandings across, instead of moral judgements of, difference and our social obligations towards each other

    Tropical forest soil carbon stocks do not increase despite 15 years of doubled litter inputs

    Get PDF
    peer-reviewedSoil organic carbon (SOC) dynamics represent a persisting uncertainty in our understanding of the global carbon cycle. SOC storage is strongly linked to plant inputs via the formation of soil organic matter, but soil geochemistry also plays a critical role. In tropical soils with rapid SOC turnover, the association of organic matter with soil minerals is particularly important for stabilising SOC but projected increases in tropical forest productivity could trigger feedbacks that stimulate the release of stored SOC. Here, we demonstrate limited additional SOC storage after 13–15 years of experimentally doubled aboveground litter inputs in a lowland tropical forest. We combined biological, physical, and chemical methods to characterise SOC along a gradient of bioavailability. After 13 years of monthly litter addition treatments, most of the additional SOC was readily bioavailable and we observed no increase in mineral-associated SOC. Importantly, SOC with weak association to soil minerals declined in response to long-term litter addition, suggesting that increased plant inputs could modify the formation of organo-mineral complexes in tropical soils. Hence, we demonstrate the limited capacity of tropical soils to sequester additional C inputs and provide insights into potential underlying mechanisms
    • …
    corecore