48 research outputs found

    Enhancing the accuracy of HMM-based conserved pathway prediction using global correspondence scores

    Get PDF
    BACKGROUND: Comparative network analysis aims to identify common subnetworks in biological networks. It can facilitate the prediction of conserved functional modules across different species and provide deep insights into their underlying regulatory mechanisms. Recently, it has been shown that hidden Markov models (HMMs) can provide a flexible and computationally efficient framework for modeling and comparing biological networks. RESULTS: In this work, we show that using global correspondence scores between molecules can improve the accuracy of the HMM-based network alignment results. The global correspondence scores are computed by performing a semi-Markov random walk on the networks to be compared. The resulting score naturally integrates the sequence similarity between molecules and the topological similarity between their molecular interactions, thereby providing a more effective measure for estimating the functional similarity between molecules. By incorporating the global correspondence scores, instead of relying on sequence similarity or functional annotation scores used by previous approaches, our HMM-based network alignment method can identify conserved subnetworks that are functionally more coherent. CONCLUSIONS: Performance analysis based on synthetic and microbial networks demonstrates that the proposed network alignment strategy significantly improves the robustness and specificity of the predicted alignment results, in terms of conserved functional similarity measured based on KEGG ortholog (KO) groups. These results clearly show that the HMM-based network alignment framework using global correspondence scores can effectively find conserved biological pathways and has the potential to be used for automatic functional annotation of biomolecules

    PicXAA-R: Efficient structural alignment of multiple RNA sequences using a greedy approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurate and efficient structural alignment of non-coding RNAs (ncRNAs) has grasped more and more attentions as recent studies unveiled the significance of ncRNAs in living organisms. While the Sankoff style structural alignment algorithms cannot efficiently serve for multiple sequences, mostly progressive schemes are used to reduce the complexity. However, this idea tends to propagate the early stage errors throughout the entire process, thereby degrading the quality of the final alignment. For multiple protein sequence alignment, we have recently proposed PicXAA which constructs an accurate alignment in a non-progressive fashion.</p> <p>Results</p> <p>Here, we propose PicXAA-R as an extension to PicXAA for greedy structural alignment of ncRNAs. PicXAA-R efficiently grasps both folding information within each sequence and local similarities between sequences. It uses a set of probabilistic consistency transformations to improve the posterior base-pairing and base alignment probabilities using the information of all sequences in the alignment. Using a graph-based scheme, we greedily build up the structural alignment from sequence regions with high base-pairing and base alignment probabilities.</p> <p>Conclusions</p> <p>Several experiments on datasets with different characteristics confirm that PicXAA-R is one of the fastest algorithms for structural alignment of multiple RNAs and it consistently yields accurate alignment results, especially for datasets with locally similar sequences. PicXAA-R source code is freely available at: <url>http://www.ece.tamu.edu/~bjyoon/picxaa/</url>.</p

    Assessing reproducibility of inherited variants detected with short-read whole genome sequencing

    Get PDF
    Background: Reproducible detection of inherited variants with whole genome sequencing (WGS) is vital for the implementation of precision medicine and is a complicated process in which each step affects variant call quality. Systematically assessing reproducibility of inherited variants with WGS and impact of each step in the process is needed for understanding and improving quality of inherited variants from WGS. Results: To dissect the impact of factors involved in detection of inherited variants with WGS, we sequence triplicates of eight DNA samples representing two populations on three short-read sequencing platforms using three library kits in six labs and call variants with 56 combinations of aligners and callers. We find that bioinformatics pipelines (callers and aligners) have a larger impact on variant reproducibility than WGS platform or library preparation. Single-nucleotide variants (SNVs), particularly outside difficult-to-map regions, are more reproducible than small insertions and deletions (indels), which are least reproducible when > 5 bp. Increasing sequencing coverage improves indel reproducibility but has limited impact on SNVs above 30x. Conclusions: Our findings highlight sources of variability in variant detection and the need for improvement of bioinformatics pipelines in the era of precision medicine with WGS.Peer reviewe
    corecore