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Abstract

In this paper, we introduce an efficient algorithm for alignment of multiple large-scale biological net-

works. In this scheme, we first compute a probabilistic similarity measure between nodes that belong

to different networks using a semi-Markov random walk model. The estimated probabilities are fur-

ther enhanced by incorporating the local and the cross-species network similarity information through

the use of two different types of probabilistic consistency transformations. The transformed alignment

probabilities are used to predict the alignment of multiple networks based on a greedy approach. We

demonstrate that the proposed algorithm, called SMETANA, outperforms many state-of-the-art net-

work alignment techniques, in terms of computational efficiency, alignment accuracy, and scalability.

Our experiments show that SMETANA can easily align tens of genome-scale networks with thousands

of nodes on a personal computer without any difficulty. The source code of SMETANA is available

upon request. The source code of SMETANA can be downloaded from http://www.ece.tamu.edu/

˜bjyoon/SMETANA/.
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Introduction

The complicated interactions among numerous cellular constituents – such as DNAs, RNAs, and pro-

teins – govern numerous complex cellular functions. For instance, protein-protein interactions (PPI)

conduct various transcriptional, signaling, and metabolic processes in cells [1]. Graphical representa-

tion of these complex interactions, where biomolecules are represented as nodes and their interactions

as edges, can help us better understand and investigate the structure and dynamics of diverse biological

mechanisms [2, 3]. Thanks to the recent technological advances in high-throughput interaction mea-

surement techniques, along with many text-mining tools developed to search the biomedical research

literature for known molecular interactions, large-scale PPI networks are currently available for a num-

ber of model organisms, and biological network databases are still undergoing rapid expansion [4–8].

Availability of such large-scale interaction data has expedited comprehensive studies of biological net-

works, and the development of accurate and efficient computational techniques for network analysis is

expected to lead to the discovery of novel biological knowledge. Cross-species comparison of genome-

scale PPI networks can serve as one effective way of analyzing the available biological networks [9, 10].

As demonstrated in many comparative genome studies, such a comparative approach can provide effec-

tive computational framework for identifying functional modules (e.g., signaling pathways or protein

complexes) that are conserved across different networks [9].

One of the research problems that are actively studied in the field of comparative network analysis

is the network alignment problem. The main goal of network alignment is to predict the best map-

ping between two (or more) networks, based on the similarity of the constituent molecules and their

interaction patterns. By investigating the cross-species variations of biological networks, network align-

ment may be employed for predicting conserved functional modules [11] or inferring the function of

unannotated proteins [12]. To obtain biologically meaningful alignment results, the network alignment

algorithm needs to integrate the similarity between the individual nodes (i.e., biomolecules in the net-

works) – in terms of their composition, structure, or function – as well as the similarity between their

interactions patterns (i.e., topological similarity). As shown by a reduction to the graph isomorphism

problem [13–15], the optimal network alignment problem is NP-hard. Therefore, many comparative

network alignment schemes impose additional mathematical constraints or adopt various heuristics to

make the problem computationally feasible [14–39].
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While most of these schemes were developed for pairwise network alignment, several schemes have

been proposed for the more challenging problem of aligning multiple networks [16–19, 21, 22]. As the

complexity of the problem grows exponentially with the number of networks to be aligned, multiple

network alignment algorithms need to devise a simple and scalable alignment scheme so that they

can be used for aligning more than just a few networks. NetworkBLAST-M [21, 22], which is one of

the pioneering network alignment algorithms, greedily searches for highly conserved local regions in

the alignment graph constructed from the potential orthologous nodes. Using a progressive scheme,

Græmlin [16, 17] successively performs pairwise alignment of the closest network pairs by maximizing

an objective function based on a set of learned parameters. IsoRank [19] greedily builds up the multiple

network alignment according to the pairwise node similarity scores computed using spectral graph

theory. IsoRankN [18] further extends the idea in IsoRank by employing a spectral clustering scheme.

As the number of networks in the alignment increases, the overall computational cost tends to sharply

increase and the alignment quality tends to decrease for most existing schemes, making them impractical

for aligning multiple large-scale networks.

In this paper, we propose a novel method, called SMETANA (Semi-Markov random walk scores

Enhanced by consistency Transformation for Accurate Network Alignment), for finding the maximum

expected accuracy (MEA) alignment of large-scale biological networks. In this scheme, we first compute

the node correspondence scores based on a semi-Markov random walk model. These scores can be ef-

ficiently computed using a closed-form formula and they provide a probabilistic similarity measure be-

tween nodes that belong to different networks. To effectively incorporate the similarities across multiple

networks, we additionally employ two different types of probabilistic consistency transformations that

can enhance the initial node correspondence scores, originally obtained from pairwise network compar-

ison. The transformed scores are subsequently used to construct the MEA global alignment in a greedy

manner. To demonstrate the effectiveness of SMETANA, we extensively evaluate its performance based

on real and synthetic examples. We show that SMETANA clearly outperforms state-of-the-art network

alignment techniques, in terms of computational efficiency, alignment accuracy, and scalability.
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Materials and Methods

Suppose we want to align a set of n PPI networks G = {G1, · · · ,Gn}. Each network G = (V, E , w) consists

of a set V = {v1, v2, · · · , vN} of N nodes that correspond to the proteins in the network; a set E = {eij}

of m undirected edges that represent the protein interactions, where the edge eij denotes the interaction

between proteins vi and vj ; and a weight function w : E → R, representing the strength or reliability

of an interaction. Then, for any two networks G1 = (U ,D, w1) and G2 = (V, E , w2), we show the node

similarity score for a pair of proteins (ui, vj), where ui ∈ U and vj ∈ V , as h(ui, vj). Typically, sequence

similarity scores are used to measure this node similarity, although it is possible to use other measures

based on structural or functional similarity between the proteins.

Estimation of probabilistic node correspondence scores through semi-Markov ran-

dom walk

An effective network alignment scheme should map protein nodes across the given PPI networks based

on their overall biological similarity, measured by integrating the node similarity (e.g., sequence-based

similarity) between the matching proteins as well as the similarity between their patterns of interactions

with the neighboring proteins. The semi-Markov random walk (SMRW) model provides an effective

means of estimating such integrated similarity scores [40, 41]. Markov random walk is a process that

consists of a succession of random steps (on a graph or a path) according to the Markov assumption.

Unlike an ordinary Markov random walk, in which the random walker always spends a fixed amount of

time between each transition, in a semi-Markov random walk, the walker may spend a random amount

of time between the moves. To estimate the node correspondence scores, we consider a simultaneous

semi-Markov random walk on a pair of networks as in [41] by taking simultaneous random steps on both

networks. This simultaneous random walk on two graphs G1 and G2 is equivalent to a random walk on

their product graph GX = (VX , EX ) [41,42]. Based on this model, we define the global correspondence score

s(ui, vj) between any two nodes ui ∈ G1 and vj ∈ G2, as described in the supplementary data.

Estimation of the Pairwise Node Alignment Probabilities

Here, we aim to employ the computed SMRW correspondence scores to define the likelihood of align-

ment between each node pair. We represent the pairwise node alignment probability between any two
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nodes ui ∈ G1 and vj ∈ G2 as P (ui ∼ vj |G1,G2). To compute such a probability, we exploit the corre-

spondence scores obtained in the previous step, as follows:

P (ui ∼ vj |G1,G2) =
1
2

[
s(ui, vj)∑|V|

j′=1 s(ui, vj′)
+

s(ui, vj)∑|U|
i′=1 s(ui′ , vj)

]
. (1)

This way, we consider the relative importance of vj for matching with ui with respect to other homo-

logues of ui in G2, and vice versa. This consideration is an important issue, since a meaningful posterior

alignment probability should balance the alignment likelihood across the network, assign relative pri-

ority to the nodes, and remain symmetric with respect to the pair networks (i.e. P (ui ∼ vj |G1,G2) =

P (vj ∼ ui|G2,G1)). This can be written in a simple matrix form as follows:

P =
1
2
[
J1S + SJ2

]
, (2)

where J1 is a |U| × |U|-dimensional diagonal matrix such that J1[i, i] = 1/
∑|V|

j′=1 s(ui, vj′), J2 is an |V| ×

|V|-dimensional diagonal matrix such that J2[j, j] = 1/
∑|U|

i′=1 s(ui′ , vj), and P is a |U| × |V|-dimensional

matrix such that P[i, j] = P (ui ∼ vj |G1,G2).

Enhancing Probability Estimation Through Consistency Transformations

Here, we use two types of probabilistic consistency transformations to improve the pairwise node align-

ment probabilities P (ui ∼ vj |G1,G2) using the information from neighboring nodes in the original pair

of networks as well as the alignment information from other networks in the alignment. This modi-

fication makes these probabilities suitable for constructing a consistent and accurate multiple network

alignment.

Intra-network probabilistic consistency transformation

In the first consistency transformation, we incorporate the information from the neighboring nodes to

update the original pairwise node alignment probabilities. This transformation is motivated by the

observation that nodes are mostly conserved across networks as connected complexes or pathways.

Thus, if most of the neighbors of ui are aligned to most of the neighbors of vj then there is a high chance

that ui will be aligned to vj . Therefore, we can utilize the neighbors’ alignment probabilities to better
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estimate the alignment probability of a given node pair ui ∼ vj . Based on this motivation, we introduce

the intra-network probabilistic consistency transformation defined as follows:

P ′(ui ∼ vj |G1,G2) = αP (ui ∼ vj |G1,G2)

+ (1− α)
|U|∑

i′=1

|V|∑
j′=1

[
P (ui ∼ ui′ |G1)P (ui′ ∼ vj′ |G1,G2)P (vj ∼ vj′ |G2)

]
, (3)

where α ∈ [0, 1] is a parameter that determines the balance between the original pairwise alignment

probability and the influence from the neighbors, and P (ui ∼ ui′ |G1) is the probability that ui will be a

neighbor of ui′ . The transformation in (3) can be written in a matrix form as follows:

P′ = αP + (1− α)A1PA′2, (4)

where A1 and A2 are the transition probability matrices of G1 and G2, respectively, and P′ is a |U| × |V|-

dimensional matrix such that P′[i, j] = P ′(ui ∼ vj |G1,G2). To avoid false positives, we only update

P (ui ∼ vj |G1,G2) to P ′(ui ∼ vj |G1,G2) for those node pairs that satisfy P (ui ∼ vj |G1,G2) > 0 or if

P ′(ui ∼ vj |G1,G2) is among the top 1% highest alignment transformed probabilities in the network.

Cross-network probabilistic consistency transformation

In the second consistency transformation, we incorporate the information from other networks in the

alignment to improve the estimation of pairwise node alignment probabilities. The proposed probabilis-

tic consistency transformation is motivated by a similar idea that has been utilized in multiple sequence

alignment, which was based on the motivation that all the pairwise alignments induced from a multiple

alignment should be consistent with each other [43]. For example, given three networks G1 = (U ,D),

G2 = (V, E), and G3 = (W,F), if ui (a node in G1) aligns with wk (a node in G3) in the projected G1 − G3

alignment, and at the same time, if wk aligns with vj (a node in G2) in the projected G3 − G2 alignment,

then ui should also align with vj in the projected G1 − G2 alignment. Thus, we can utilize the “inter-

mediate” network G3 to improve the estimate of ui ∼ vj alignment probability by incorporating the

consistency information in ui ∼ wk and wk ∼ vj alignments. Here, we extend the idea of the improved

probabilistic consistency transformation proposed in [44] for multiple sequence alignment to the multi-

ple network alignment problem at hand. This transformation considers the relative significance of each
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intermediate network in improving the pairwise alignment probabilities.

Let G = {G1,G2, · · · ,Gn} represent the set of n networks to be aligned. We define T = {Gr ∈

G|G1 �Gr ∧G2 �Gr} as the set of networks in G that are related to both G1 and G2, where G1 �Gr means G1

and Gr are homologous. Using only the networks in T, we define the following probabilistic consistency

transformation:

P ′′(ui ∼ vj |G) =
1
|T|

∑
Gr∈T

P ′(ui ∼ vj |G1,G2,Gr)

=

∑
Gr∈G P ′(ui ∼ vi|G1,G2,Gr)I{G1 � Gr ∧ G2 � Gr}∑

Gr∈G I{G1 � Gr ∧ G2 � Gr}
, (5)

where I{·} is the identity function which checks whether Gr is homologue to both G1 and G2, and

P ′(ui ∼ vj |G1,G2,Gr) is the node alignment probability given the three networks G1, G2, and Gr. As in the

multiple sequence alignment case [43], P ′(ui ∼ vj |G1,G2,Gr) can be approximated as
∑

wk∈Gr
P ′(ui ∼

wk|G1,Gr)P ′(wk ∼ vj |Gr,G2).

In practice, we cannot judge with certainty whether two networks are homologous or not. Thus,

taking the expectation of (5) along with the independence assumption of G1 � Gr and G2 � Gr, we obtain:

P ′′(ui ∼ vj |G) ' 1∑
Gr∈G P (G1 � Gr)P (G2 � Gr)

×
∑
Gr∈G

∑
wk∈Gr

[
P ′(ui ∼ wk|G1,Gr)P ′(wk ∼ vj |Gr,G2)P (G1 � Gr)P (G2 � Gr)

]
, (6)

where P (G1 � Gr) is the probability that G1 and Gr are homologous to each other. We estimate this

probability as

P (G1 � Gr) ,
1
|M|

∑
xi∼wk∈M

P (xi ∼ wk|G1,Gr), (7)

whereM is maximum weighted matching of G1 and Gr. We can rewrite (6) in a matrix form as follows:

P′′ =

∑
Gr∈G P′1rP′r2P (G1 � Gr)P (G2 � Gr)∑

Gr∈G P (G1 � Gr)P (G2 � Gr)
, (8)

where P′1r is the transformed matrix of G1 − Gr alignment computed as in (4). Similarly, P′r2 is the

transformed matrix of Gr − G2 alignment.

As before, to avoid false positives, we only use this transformation to update the alignment proba-
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bility of node pairs with non-zero alignment probability, or if their transformed probability is within the

top 1%.

Alignment construction

Given a set of networks G, our ultimate goal is to find the multiple network alignment that maximizes

the expected accuracy (i.e. the expected number of correctly aligned nodes) over all networks in G.

Let A∗ be the true (unknown) alignment. We define accuracy of the alignment A with respect to the

alignment A∗ as:

accuracy(A,A∗) =
1
|A|

∑
ui∼vj∈A

1{ui ∼ vj ∈ A∗}, (9)

which is the relative proportion of correctly matched nodes. Since the true alignment is not known, we

seek to maximize the expected accuracy of the alignment as proposed in [43]:

EA∗ [accuracy(A,A∗)] =
1
|A|

∑
ui∼vj∈A

P (ui ∼ vj |G), (10)

where P (ui ∼ vj |G) is the posterior probability of ui ∼ vj alignment. If we use the consistency trans-

formed probabilities, defined in (6), as the alignment probability of node pairs, the MEA problem will

reduce to the standard maximum-weighted n-partite matching, which is NP-hard. Thus, we find a sub-

optimal solution to this problem through a greedy approach. In this scheme, we start with the null

alignment, and greedily construct the alignment through successive insertion of the node pair (ui, vj)

with the largest posterior pairwise node alignment probability. While growing the alignment, we con-

sider the following two constraints to avoid false positives:

• While inserting a new node pair (ui, vj) to the alignment, if only one of these nodes (e.g., ui) was

previously included in the alignment (e.g., in the equivalence class C), we check if there exist other

nodes in C from the same network of node vj . For instance, consider v1, v2, · · · vk as well as vj are

all in network G, and the nodes v1, v2, · · · vk are already in the aligned group C. In such a case, we

only consider adding vj to C if P (vj ∈ C) ≥ β 1
k

∑k
j′=1 P (vj′ ∈ C), where β is a scaling factor and

P (vj ∈ C) is the probability of appearance of vj in the alignment group C, defined as:

P (vj ∈ C) =
1
|C′|

∑
w∈C′

P ′′(vj ∼ w|G), (11)
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where C′ = {w ∈ C|w /∈ G} is the set of nodes in C from networks other than G.

In this way, we verify whether the coherence of vj to C is sufficiently close to the average coherence

of other nodes in C which are also from the same network G.

• We also restrict the maximum number of nodes from one network in any alignment group to nmax.

Based on the alignment process described above, we can ultimately find the global alignment of the

given set of networks. In the final alignment, each node may be mapped to several nodes that belong to

other networks.

Results

To investigate the performance of the proposed network alignment algorithm, we conducted a set of

experiments based on three suites of synthetic benchmark datasets as well as a number of real PPI

network examples. We compared the performance of SMETANA against four well-known multiple

network alignment algorithms: IsoRankN [18], NetworkBLAST-M (NBM) [21], Græmlin 2.0 [17], MI-

GRAAL [35], C-GRAAL [36], AlignNemo [37], and PINALOG [38]. In our experiments, we used the

restricted-order version of NBM as the running time of the relaxed-order version increases exponen-

tially with respect to the number of networks to be aligned. Græmlin needs to learn the parameters of

its scoring function, and to this aim, we used the same training set as in [45]. We adopted the graphlet de-

gree signature distance and the E-values (measuring the sequence similarity) as the similarity measures

used in the MI-GRAAL and C-GRAAL algorithms. To test AlignNemo on synthetic data, we regarded

nodes whose similarity score exceeds 100 as putative orthologues. The parameter α, which determines

the balance between sequence similarity and topological similarity, was set to 0.6 for IsoRankN as in the

original paper [18]. For SMETANA we set nmax to 10, α to 0.9, and β to 0.8.

We use various measures to asses the specificity, sensitivity, functional consistency, coverage, and

interaction conservation of network alignment algorithms, as in other studies [17, 18, 35]. We refer to

the set of aligned nodes (i.e., potential orthologs) as the equivalence class. Each equivalence class may

include an arbitrary number of nodes from each network. To compute these accuracy measures, we first

remove the unannotated nodes (nodes with no functional annotations) from the alignment result and

also remove equivalence classes containing only a single node. A given equivalence class is viewed as
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being correct if all the included nodes belong to the same functional group.

Alignment Performance on NAPAbench Benchmark Dataset

We first evaluated the performance of the proposed algorithm on NAPAbench [45], an extensive align-

ment benchmark that consists of large-scale synthetic PPI network families. Currently, NAPAbench

consists of three suites of datasets: the pairwise alignment dataset, the 5-way alignment dataset, and the

8-way alignment dataset. Each of these suites contain PPI network families generated using three differ-

ent network growth models, namely, DMC [46], DMR [47], and CG [48], which enables the performance

assessment of network alignment algorithms under diverse conditions. The pairwise dataset contains

three network pairs, where each pair consists of a network with 3,000 nodes and another network with

4,000 nodes. The 5-way dataset consists of three network families, each with five networks with 1,000,

1,500, 2,000, 2,500, and 2,500 nodes, respectively. This dataset simulates a family of PPI networks that

correspond to distantly related species. Finally, the 8-way alignment dataset also consists of three net-

work families, each with eight networks of 1,000 nodes. The networks in each network family are

obtained by evolving an ancestral network of size 400. The 8-way alignment dataset simulates network

families of closely-related species. Further details about these benchmark datasets can be found in [45].

SPE, CN, and MNE measures

To measure the overall accuracy of the predicted alignments, we first computed the following measures

for SMETANA as well as previous network alignment algorithms:

• Specificity (SPE): The relative number of correctly predicted equivalence classes.

• Correct Nodes (CN): The total number of nodes (i.e., proteins) that are assigned to the correct

equivalence class. This measure reflects the sensitivity of the prediction [17].

• Mean normalized entropy (MNE): The mean normalized entropy of the predicted equivalence

classes can provide an effective measure of the consistency of the predicted network alignment.

The normalized entropy of a given equivalence class C can be computed by:

H(C) = − 1
log d

d∑
i=1

pi log pi, (12)
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where pi is the fraction of proteins in C that belongs to the ith functional group, and d is the number

of different functional groups. That is, a cluster that consists of nodes with higher functional

consistency will have lower entropy.

The SPE, CN, and MNE of different network alignment algorithms on the pairwise, 5-way, and 8-

way datasets are respectively summarized in Tables 1, 2, and 3 for the DMC, DMR, and CG datasets in

NAPAbench. As we can see in Table 1, for the pairwise alignment, NBM has the highest specificity and

the lowest entropy, while SMETANA yields significantly higher number of correctly aligned nodes (i.e.,

CN), implying its higher sensitivity. However, as the number of networks increases, the NAPAbench

shows clear advantage in terms of all SPE, CN, and MNE (see results for 5-way and 8-way datasets).

On average, SMETANA shows around 10% improvement in SPE, 30% improvement in CN, and 35%

improvement in MNE over the next best algorithm (IsoRankN) on the 5-way dataset. The improvement

is even higher for the 8-way alignment, SMETANA leads to 25%, 60%, and 40% improvements in terms

of SPE, CN, and MNE. Since NBM algorithm only predicts equivalence classes that are conserved across

all the compared species (i.e. they have at least one node from each network), we also report the accuracy

of each network alignment algorithm in predicting equivalence classes that are conserved across all

networks. These results are shown in the last three rows of Table 2 and Table 3. Interestingly, this

comparison shows that SMETANA outperforms NBM, as well as the other algorithms, even by a larger

margin. Experimental results in this section clearly demonstrate that SMETANA can effectively track

the similarity between nodes across multiple networks, while previous algorithms show performance

degradation as the number of networks increases.

Coverage

Next, we investigate the coverage of the predicted equivalence classes in the 5-way and the 8-way

datasets. We report the coverage in terms of two measures. The first measure is the number of pre-

dicted classes that consist of nodes from k different networks, where k ranges between 1 and |G| (i.e.,

the total number of networks in the dataset). As another measure of coverage, we report the total num-

ber of nodes (i.e proteins) in the predicted classes. As before, we split the number of predicted nodes

based on the number of different species in the equivalence class they belong to. Results for 5-way

alignment are shown in Figure 1. As we can see, SMETANA and IsoRankN predict a larger number

of equivalence classes, where SMETANA predicts about 50% more classes that contain nodes from all
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k = 5 networks. In terms of the number of predicted nodes, we can also observe that the SMETANA

results in better coverage compared to other algorithms and that most of the predicted nodes belong to

equivalence classes that span k = 4 or k = 5 species. The above results show that SMETANA yields

multiple network alignments with better coverage without sacrificing the alignment accuracy (e.g., see

Table 2). Besides, considering that the 5-way alignment dataset consists of networks with varying size,

we expect to have equivalence classes with k < 5 species. This implies that the restriction in the NBM

algorithm to report only equivalence classes with k = 5 species may be too stringent when comparing

the networks of remotely related species and it may result in lower alignment accuracy. In fact, this can

be seen in Table 2, where the NBM yields lower SPE and CN, and higher MNE scores. Similar trends

can be observed from the 8-way alignment results, as shown in Figure 2. SMETANA also attains better

coverage on this dataset compared to other algorithms and most of its predictions spans k >= 6 species.

Conserved interactions

To verify whether the predicted network alignments effectively capture the topological conservation

across networks, we investigate the number of conserved interactions in the alignment results obtained

using different alignment schemes. We report two metrics for this purpose. The first metric, CI (con-

served interactions), reports the total number of perfectly conserved edges between all equivalence

classes in the alignment. The second metric, COI (conserved orthologous interactions), reports the total

number of conserved edges between “correct” equivalence classes that consist of orthologous nodes.

Results for the pairwise, 5-way, and 8-way alignment datasets are shown in Figure 3. For pairwise

alignments, we can observe that SMETANA and MI-GRAAL lead to the largest number of conserved

interactions (i.e., high CI) among the compared algorithms. However, it should be noted that more than

97% of the conserved edges predicted by SMETANA are between orthologous equivalence classes (i.e.,

the average ratio of COI/CI is 97%), while this ratio is around 83% for MI-GRAAL. On the 5-way and

8-way datasets, SMETANA yields network alignment results with significantly higher CI and COI com-

pared to the other algorithms. We can also observe that around 95% of the conserved edges connect

orthologous equivalence classes. In contrast, the average COI/CI ratio is around 60% for IsoRankN and

around 30% for NBM. These results suggest that the network alignments predicted by other alignment

schemes may often contain spurious interactions that do not actually correspond to real conserved inter-

actions between orthologous nodes. On the other hand, SMETANA can successfully unveil conserved
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interactions between orthologous proteins across multiple networks.

Performance Dependence on Sequence Similarity

Here, we study the effect of sequence similarity on the performance of the various network alignment

algorithms. To this aim, we vary the separation between the similarity score distributions of orthologous

and non-orthologous nodes by a variable b as defined in [45]. A larger b separates the two distributions

further, thereby making it easier to align the networks (and to predict potential orthologs across net-

works) based on sequence similarity alone, without necessarily looking into their topological similarity.

For this experiment, we generated two networks, each with 1,000 nodes, from an ancestral network

with Na = 500 nodes. Figure 4 shows how the performance metrics change with respect to b. As we can

see, for SMETANA, IsoRankN Græmlin, AlignNemo, and PINALOG, the overall alignment accuracy

(reflected in the five performance metrics: SPE, CN, MNE, CI, COI) tends to improve as the separation

between the two similarity score distributions increases. In contrast, NBM, MI-GRAAL, and C-GRAAL

show more or less constant performance regardless of the separation, implying that these algorithms are

less reliant on node similarity scores. Figure 4 clearly shows that SMETANA consistently outperforms

other alignment algorithms in all cases and that its performance does not depend too much on sequence

similarity.

Computational Complexity

The proposed network alignment scheme is highly efficient, and the computational complexity of SMETANA

is only polynomial in terms of the number of networks and the size of the networks. Suppose we have

n networks, where the maximum network size is N = max
i
|Vi|, the maximum number of interactions

in a network is m = max
i
|Ei|, and the maximum number of non-zero elements in a pairwise similarity

score matrix H is z. Then the overall complexity of the algorithm will beO
(
n2[mN +nzN +z log(n2z)]

)
.

In practice, this can be approximated as O(n3zN). Figure 5 compares the computational complexity of

different algorithms, based on the total CPU time that is needed to align the networks in the pairwise,

5-way, and 8-way alignment datasets. All experiments have been performed on a desktop computer

with a 2.2GHz Intel Core2Duo CPU and 4GB memory. It should be noted that Græmlin requires a

training stage to estimate the parameters used by the algorithm, which took more than a day in our
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experiments. We can observe in Figure 5 that SMETANA is the fastest among the compared algorithms.

In fact, SMETANA can provide alignment results in just a few minutes even for 5 or 8 large networks.

Performance Analysis on Real Networks

Next, we conducted further experiments to verify the performance of SMETANA on real PPI networks.

For these experiments, we took the PPI network of S. cerevisiae and generated a set of PPI network by re-

sampling the original network independently. More specifically, we first randomly picked a seed node

among the high-degree nodes (potential hubs) in the S. cerevisiae network. We then iteratively grew

the network by randomly inserting 20% of the neighbors of the current network. We stopped growing

the network when the total number of nodes in the network exceeded 600. The final networks typically

contained around 1,000 nodes. We then used SMETANA, IsoRankN, and NBM to align 2∼20 re-sampled

networks and compared their performance. In this way, we can assess the scalability of the respective

alignment algorithms and see how they perform as the number of networks grows.

To assess the alignment accuracy, we used the KEGG orthology (KO) annotation of the proteins. A

node without any KO annotation was considered to be in a correct equivalence class only if all the other

aligned nodes (in the given class) correspond to the same parent node in the original PPI network of

S. cerevisiae. Figure 6 illustrates the trends of sensitivity (the relative number of nodes that are assigned

to the correct equivalence class) and specificity (the relative number of correctly predicted equivalence

classes) as the number of networks in the alignment increases. As we can see, SMETANA maintains

good performance, even up to 20 networks, significantly outperforming other methods. In fact, our

results show that the accuracy of the other alignment schemes quickly degrades with increasing number

of networks. Figure S1 shows the overall computational time that is needed to align the networks, as

the number of networks increases. We can observe that NBM and SMETANA have considerably lower

complexity compared to IsoRankN.

Alignment Results Based on Real PPI Networks

In this section, we present some example alignment results obtained from aligning real PPI networks

using SMETANA. In this experiment, we aligned the PPI networks of D. melanogaster, H. sapiens, and

S. cerevisiae, which are the three largest PPI networks that are currently available. We obtained the
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PPI data from IsoBase [12], a recently published database of protein interaction networks that has been

constructed by integrating the data in three different public databases: DIP [49], BioGRID [50], and

HPRD [51]. Figures 7A-D show four conserved subnetworks that correspond to transcription factor,

replication factor C, RNA polymerase, and DNA replication complexes, respectively. In this figure, the

aligned nodes (i.e., nodes that belong to the same equivalence class) are placed in the same row and

are connected with yellow dashed lines. In each network, the interactions in the IsoBase dataset are

shown in solid lines. For D. melanogaster, some edges that are missing in IsoBase but are present in the

STRING protein interaction database [52] are shown in gray dotted lines. In all of these examples, the

aligned proteins predicted by SMETANA belong to the same KEGG orthology (KO) group, reflecting

the high functional coherence of the predicted equivalence classes. We can also observe that SMETANA

can effectively recover the conserved interactions and handle inserted/deleted nodes and interactions

without difficulty.

Discussion

In this paper, we proposed a novel network alignment algorithm, called SMETANA, that can efficiently

align multiple large-scale PPI networks. The algorithm estimates the pairwise node alignment proba-

bilities using a semi-Markov random walk (SMRW), and the estimated probabilities are updated using

probabilistic consistency transformations.The transformations proposed in this paper utilize local and

global similarities within and across networks, which are ultimately helpful for predicting a more con-

sistent alignment of multiple networks. The updated node alignment probabilities are employed in a

greedy alignment construction scheme, which aims to maximize the expected accuracy of the final net-

work alignment. Extensive evaluations based on real and synthetic PPI networks clearly demonstrate

that the proposed algorithm can serve as an effective tool for accurately aligning multiple networks. Es-

pecially, the proposed algorithm truly stands out when aligning a large number of networks. In fact, our

simulation results show that SMETANA delivers consistently high performance as the number of net-

works increases. These results reflect the effectiveness of the proposed intra-network and cross-network

probabilistic consistency transformations, which further enhance the pairwise node alignment proba-

bilities that are initially estimated by the SMRW model by incorporating additional information from

other networks. SMETANA is also highly efficient and scalable and it can easily align tens of networks
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with thousands of nodes within a few minutes on a personal computer.
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Table 1. Performance of different algorithms for pairwise network alignment.
DMC DMR CG
SPE CN MNE SPE CN MNE SPE CN MNE

SMETANA 92.58 5191 6.93 91.48 4933 7.39 94.80 4889 4.81
IsoRankN 82.69 3836 14.13 83.55 3915 13.40 83.16 3868 13.34
NBM 96.55 3185 4.98 96.75 2853 4.02 96.23 4523 4.03
Græmlin 2.0 77.37 2137 15.70 81.03 2322 13.33 90.72 2549 7.96
MI-GRAAL 66.13 3612 35.27 69.97 3852 31.59 79.48 4385 22.76
C-GRAAL 32.12 1779 66.52 43.80 2430 55.74 63.34 3523 37.56
AlignNemo 77.37 2137 15.70 81.03 2322 13.33 90.72 2549 7.96
PINALOG 70.64 3707 30.79 71.57 3735 29.83 71.66 3935 29.84

Performance comparison based on the pairwise alignment of two networks of size 3,000 and 4,000. The
performance of each method is assessed using the following metrics: specificity (SP), number of correct nodes
(CN), and mean normalized entropy (MNE). In each column, best performance is shown in bold.

Table 2. Performance of different algorithms for 5-way network alignment.
DMC DMR CG
SPE CN MNE SPE CN MNE SPE CN MNE

SMETANA 91.21 7299 6.94 91.55 7203 7.13 93.60 7359 5.51
IsoRankN 80.91 5538 10.27 79.58 5496 11.14 82.68 5689 9.72
NBM 85.17 1038 5.40 79.32 1182 6.81 84.62 1995 4.64
Græmlin 2.0 51.07 3028 16.32 50.88 3100 16.94 62.89 4451 13.19
SMETANA (only 5-species) 89.07 4067 4.64 88.93 3712 4.43 92.17 3782 2.66
IsoRankN (only 5-species) 69.67 1859 9.67 68.07 1610 10.26 73.83 2223 7.99
Græmlin 2.0 (only 5-species) 35.90 1575 19.50 36.60 1581 20.29 54.44 2394 14.17

Performance comparison based on the 5-way alignment of five networks of size 1500, 2000, 2500, 3000 and 3000.
The last three rows are obtained by considering only equivalence classes that contain at least one node from every
species. The performance of each method is assessed using the following metrics: specificity (SP), number of
correct nodes (CN), and mean normalized entropy (MNE). In each metrics, best performance is shown in bold.
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Table 3. Performance of different algorithms for 8-way network alignment.
DMC DMR CG
SPE CN MNE SPE CN MNE SPE CN MNE

SMETANA 87.04 6349 7.15 86.07 6207 7.53 89.69 6485 5.88
IsoRankN 64.50 4069 13.62 62.52 3938 14.58 61.18 3890 14.58
NBM 80.38 643 5.51 72.95 881 7.78 87.63 1264 3.24
Græmlin 2.0 58.67 2315 16.51 51.34 1939 19.38 49.29 2729 17.24
SMETANA (only 8-species) 92.12 3686 3.81 90.77 3358 3.59 95.95 3784 1.60
IsoRankN (only 8-species) 56.74 1987 10.06 54.36 1797 10.81 54.30 2172 10.33
Græmlin (only 8-species) 13.08 345 29.83 9.87 291 31.63 25.66 802 20.78

Performance comparison based on the 8-way alignment of eight networks of equal size 1,000. The last three rows
are obtained by considering only equivalence classes that contain at least one node from every species. The
performance of each method is assessed using the following metrics: specificity(SP), number of correct nodes
(CN), and mean normalized entropy (MNE). In each column, best performance is shown in bold.
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Figure 1. Performance of various network alignment algorithms. (A) Equivalence class coverage:
Number of equivalence classes in the 5-way alignment experiment that contain nodes from k species
(1 ≤ k ≤ 5). (B) Node Coverage: Number of nodes (i.e. proteins) that belong to equivalence classes that
contain nodes from k species in the 5-way alignment.
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Figure 2. Performance of various network alignment algorithms. (A) Equivalence class coverage:
Number of equivalence classes in the 8-way alignment experiment that contain nodes from k species
(1 ≤ k ≤ 8). (B) Node Coverage: Number of nodes (i.e. proteins) that belong to equivalence classes that
contain nodes from k species in the 8-way alignment.
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different alignments. CI reports the total number of conserved edges between any of the equivalence
classes in the alignment. COI reports the total number of conserved edges between “correct”
equivalence classes that consist of orthologous nodes.
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Figure 4. Effects of node similarity on the performance of different network alignment algorithms.
The alignment performance has been estimated at several different levels of separation between the
similarity score distribution for orthologous node pairs and that for non-orthologs pairs. Increasing the
bias b increases the separation between the two score distributions, which increases the discriminative
power of the node similarity score for predicting potential orthologs. Measures reported: specificity
(SPE), number of correct nodes (CN) (which reflects the sensitivity), mean normalized entropy (MNE),
number of conserved interactions (CI), number of conserved orthologous interactions (COI).
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Figure 5. Total CPU time for aligning the networks. The total CPU time for the pairwise, 5-way, and
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Figure 6. Performance on real networks. The trend of change in sensitivity (SEN) and specificity (SP)
as the number of networks in the alignment increases for different multiple network alignment
algorithms.
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Figure 7. Conserved subnetwork regions in the 3-way alignment of D. melanogaster, H. sapiens, and
S. cerevisiae using the proposed method. (A) Transcription factor. (B) Replication factor C. (C) RNA
polymerase. (D) DNA replication. (Aligned nodes are placed in the same row of alignment and
connected with yellow dashed lines. In each network, the interaction in the IsoBase dataset is shown in
solid lines. For D. melanogaster some edges which are missed in IsoBase but are present in STRING
protein interaction database [52] is shown in dotted gray lines.)


