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Abstract

In this work, we introduce a novel network synthesis model that can generate families of evolutionarily related synthetic
protein–protein interaction (PPI) networks. Given an ancestral network, the proposed model generates the network family
according to a hypothetical phylogenetic tree, where the descendant networks are obtained through duplication and
divergence of their ancestors, followed by network growth using network evolution models. We demonstrate that this
network synthesis model can effectively create synthetic networks whose internal and cross-network properties closely
resemble those of real PPI networks. The proposed model can serve as an effective framework for generating
comprehensive benchmark datasets that can be used for reliable performance assessment of comparative network analysis
algorithms. Using this model, we constructed a large-scale network alignment benchmark, called NAPAbench, and
evaluated the performance of several representative network alignment algorithms. Our analysis clearly shows the relative
performance of the leading network algorithms, with their respective advantages and disadvantages. The algorithm and
source code of the network synthesis model and the network alignment benchmark NAPAbench are publicly available at
http://www.ece.tamu.edu/bjyoon/NAPAbench/.
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Introduction

Protein-protein interactions (PPIs) lie at the core of a wide range

of biological processes in cells, including transcriptional, signaling,

and metabolic processes [1]. Recent technological advances have

enabled the high-throughput measurement of these interactions in

various species [2–4], and a variety of computational methods

have been developed for in-silico prediction of protein interactions

[5–8]. Availability of large-scale protein interaction data, typically

represented as networks of interacting proteins, has opened up

new ways for the systematic study of biological networks.

Especially, cross-species comparison of genome-scale PPI networks

can provide important insights into the structure and organization

of biological networks, as well as important similarities and

variations across different species [9]. In recent years, a large

number of computational methods have been developed for

comparative analysis of biological networks, where their main

focus has been on the identification of functional modules that are

conserved in the networks of multiple species [10–39]. These

methods can be broadly divided into two categories, namely,

network querying and network alignment. Network querying aims

to identify subnetwork regions in the network of a target species

that are similar to a small subnetwork of another species, used as

query [32–39]. For example, this could be used for querying a

known functional pathway in a well-studied species to identify

putative homologous pathways in different species, thereby

allowing knowledge transfer across species. Network alignment

can be viewed as a generalization of network querying, and it aims

to predict the best mapping between a set of networks, based on

the similarity of the constituent molecules and their interaction

patterns [10–31]. Network alignment methods may be used to

analyze the cross-species variations of biological networks, to

predict conserved functional modules, or to infer the function of

unannotated proteins.

Research in comparative network analysis is still at an early

stage, but many existing studies have demonstrated its potential as

an effective tool for gaining important insights into biological

systems, that would be otherwise difficult to obtain.

Unfortunately, further advance in comparative network analysis

research is critically impeded by the lack of a gold standard for

evaluating network alignment algorithms. Currently, there is no

comprehensive and reliable benchmark dataset that can be used

for validating these algorithms [12]. For this reason, it is common

practice to assess the performance of network alignment

algorithms in indirect ways, for instance, based on the functional

coherence of the aligned nodes in the predicted network alignment

or simply through anecdotal examples. Functional annotations

based on Gene Ontology (GO) [40] or KEGG orthology (KO)

[41] are often employed for this purpose. However, these

annotations are mainly curated based on the sequence similarity

between molecules, hence they may fail to effectively capture the

actual functional coherence between the molecules [28,42].

Considering that network alignment aims to incorporate molec-

ular interaction data with sequence data to make predictions that

are biologically more relevant, evaluating network alignment

algorithms based on annotations that are strongly influenced by

sequence similarity is certainly less than ideal. Besides, currently
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available protein interaction databases, such as BioGRID [43],

MIPS [44], DIP [45], IntAct [46], MINT [47], and Human

Protein Reference Database (HPRD) [48], include the protein

interaction networks for only a few species, where the interaction

data are very incomplete even for meta-databases – such as PINA

[49] and APID [50] – that have been constructed by integrating

multiple databases. For example, BioGRID v. 3.1.82 (November

2011), which is one of the most comprehensive among the existing

PPI databases, contains the PPI networks of just 25 organisms,

where the networks of 7 organisms – A. thaliana, C. elegans, D.

melanogaster, H. sapiens, M. musculus, S. cerevisiae, and S. pombe –

include more than few hundred interactions. It is widely suspected

that a significant number of interactions in the current PPI

networks may be spurious, while many true interactions may be

still missing. As discussed in [51], based on the analysis of synthetic

networks, incomplete knowledge poses a major challenge for

interactome-level comparison between different species.

Considering the incompleteness of the current PPI networks, as

well as the difficulty of accurately assessing the functional

correspondence between proteins, a network synthesis model that

can generate families of protein interaction networks with

biologically realistic properties may provide a practical and

effective alternative. Recently, Ali and Dean [51] have performed

a simulation-based study, where a pair of evolutionary related

synthetic networks were analyzed to investigate the source of low

level of interaction conservation in network alignment results.

Erten et al. [52] also proposed a simulation scheme for generating a

set of networks with known phylogeny, where the driving

motivation was to evaluate the accuracy of their network-based

phylogeny reconstruction algorithm. These studies [51,52] serve as

interesting showcases of the important role of synthetic network

models. However, these models have also a number of practical

limitations. For example, the model presented in [51] cannot be

used to synthesize a network family with an arbitrary phylogeny.

Furthermore, both models in [51] and [52] do not explicitly

represent the functional correspondence between individual

proteins across different networks, which is indispensable for

evaluating the accuracy of network alignment algorithms.

In this paper, we present a general network synthesis model that

can effectively address these issues. Following a pre-specified

phylogenetic tree, the model can generate a family of evolution-

arily related protein interaction networks, whose properties closely

mimic those of real networks – in terms of both the internal

properties of the individual networks as well as the comparative

properties across networks – as will be shown in our analysis. By

internal network properties, we refer to the local characteristics

(such as the node degree and the clustering coefficient) and their

distributions over each network, which are important in under-

standing the overall topology. On the other hand, by comparative

or cross-network properties, we refer to the properties that can be

estimated through network comparison (e.g., sequence similarity

between proteins that belong to different networks) and reflect the

similarity (or the lack thereof) between networks, which arise from

their evolutionary relationship. To demonstrate the utility of the

network synthesis model, we created a comprehensive network

alignment benchmark based on the proposed model and carried

out an extensive performance analysis of select state-of-the-art

network alignment algorithms.

Methods

Network Growth Models
In this section, we briefly review existing network growth models

that aim to computationally simulate the evolutionary growth of a

single biological network. Recently, there has been significant

interest in developing network growth models [53–70] that can

capture the characteristics of real biological networks, including

PPI networks. As pointed out in [71], PPI networks do not follow

the Erdös-Rényi’s model for random graphs. Instead, the structure

of biological networks appears to be governed by a scale-free

degree distribution, which is also the case for social networks. The

scale-free model suggests that the probability that a given node will

have a degree (i.e., number of edges) of k follows a power-law

Pd (k)*k{c, for some degree exponent c. In general, a scale-free

network possesses a few highly connected nodes (often referred as

hubs), while the rest of the nodes have only a relatively small

number of connections. This trend is generally observed in many

PPI networks, which can be explained at a molecular level, at least

in part, by the different degrees of protein binding specificity – i.e.,

the number of binding surfaces or binding partners – required by

the cell for carrying out various biological functions [42].

Preferential attachment (PA) growth model [56] is one of the network

evolution models that can generate such a distribution. In the PA

model, the network is grown by iteratively adding a new node to

the network and adding random connections to existing nodes.

The probability of adding an edge to a given node is proportional

to its degree, hence the model prefers to connect the new node to

nodes that have many interacting partners. The PA model can also

capture another important property of PPI networks called the

‘‘small-world effect’’, which means that any node in the network

can be typically reached from other nodes within a few links.

Despite its effectiveness in modeling the scale-free degree

distribution in PPI networks as well as their small-world property,

the PA mechanism fails to capture other important properties,

such as the graphlet distribution in real networks and their

structural modularity [53,65,72,73].

Inspired by the gene duplication model used to explain genome

evolution [74], several duplication-based techniques have been

proposed to simulate network evolution [53–55,57–63,66,67,69].

Basically, the gene duplication models assumes that the primary

source of protein diversity is the repetitive duplication of existing

genes followed by mutation of the duplicated genes leading to

functional divergence [74]. A recent analysis of protein interaction

networks [75] showed that gene duplication may play important

roles in increasing the organismal complexity. The duplication-

divergence model can generate networks that retain many of the

generic characteristics of biological networks, such as the power-

law degree distribution [76], hence it can provide an alternative

framework for modeling PPI networks. The duplication-mutation-

complementation (DMC) model [53] and the duplication with random

mutation (DMR) model [54,55] are two examples of duplication-

divergence based network growth models that have been

investigated in depth. Given a seed network, the DMC model

[53] grows it by iterating the following steps:

1. Add a new node v’ to the network by duplicating a randomly

chosen node v in the current network. Connect v’ to all

neighbors u [Nb(v) of the node v.

2. For every neighbor u [Nb(v), randomly pick either edge u{v’
or u{v, and randomly remove the edge with probability qmod .

3. Add a new edge between v and v’ with probability qcon.

It was shown that the above DMC model can capture various

biological features of PPI networks [72,77], including their

hierarchical modularity. The DMR model is another well-studied

network growth model based on the duplication-divergence

principle [54,55], where the network is obtained by repetitively

applying the following steps:
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1. As in the DMC model, add a new node v’ to the network by

duplicating a randomly chosen node v in the current network.

Connect v’ to all neighbors u [Nb(v) of the node v.

2. Randomly remove the edges between v’ and u with probability

qdel .

3. Introduce random edges between v’ and other nodes in the

network (that are not connected to the original node v) with

probability qnew=N, where N is the size of the current network.

As shown in [73,78], the DMR model can generate networks

that resemble real PPI networks in various aspects, such as the k-

hop reachability (i.e, the number of distinct nodes that can be

reached from a given node via a path of ƒk edges), the graphlet

distribution, as well as the betweenness, closeness, and degree

distributions.

Another notable network growth model that is not based on the

duplication-divergence principle is the crystal growth (CG) model,

recently proposed by Kim and Marcotte [65]. The CG model

takes a highly module-oriented approach, which tries to emulate

the physical process of growing protein crystals in solution. Kim

and Marcotte [65] showed that the CG model can better explain

many features of real PPI networks, including their network

topology, their characteristic age distribution, and the spatial

distribution of the subunits of different ages within protein

complexes, hinting at a plausible physical mechanism of network

evolution. Specifically, the capability to accurately capture age-

dependent interaction patterns in PPI networks is an important

advantage of the CG model, as this is one major drawback of

existing models (e.g., duplication-based techniques). The CG

model grows a seed network by iteratively adding new nodes as

follows:

1. Define modules (i.e., dense local network regions) in the current

network using Newman’s algorithm [79]. Let m be the number

of modules in the network.

2. Introduce a new node v’ to the network. Either define the node

v’ as a new module by itself (with probability pnew~1=m) or

add it to one of the existing modules (with probability 1{pnew).

3. If v’ is defined as a new module, add d random connections to

other nodes in the network according to the anti-preferential

attachment (AP) rule. (Note that, according to the AP rule,

nodes prefer to add edges to low-degree nodes.)

4. Otherwise, randomly select one of the m modules in the

network and choose an anchor node v in the selected module,

based on the AP rule. Add d connections between v’ and the

randomly selected neighbors of v. Repeat this step if v has less

than d neighbors.

In addition to these three network growth models, there are also

other randomized network generation schemes based on different

approaches. For example, the scheme proposed in [70] does not

generate a random network by growing a small seed network.

Instead, this algorithm, which is developed based on Tailored

random graphs, initiates from another random graph with the

same dimensionality and the same degree sequence (i.e., the

sequence of node degrees of the desired network) as the final

network. Then it iteratively rewires the network (e.g., by edge

swapping) to reach the desired degree distribution and joint degree

statistics for connected nodes. However, this method is not well-

suited for modeling network families, as it requires a predefined

degree sequence (which may not be available in practice).

Furthermore, as this scheme does not follow a growth model, it

cannot effectively simulate evolutionarily related networks.

In the current work, we adopt and compare the three network

growth models discussed above–i.e., DMC, DMR, and CG–to

generate families of synthetic PPI networks. Note that the variables

qmod , qcon, qdel ,qnew and d are user defined parameters for DMC,

DMR, and CG schemes. Incorporation of other network evolution

models is straightforward.

Characteristics of Protein Interaction Networks
To develop a biologically realistic model for generating families

of synthetic protein interaction networks, we first study the

characteristics of real PPI networks of five organisms: C. elegans, D.

melanogaster, H. sapiens, M. musculus, and S. cerevisiae. We present the

analysis results for D. melanogaster, H. sapiens, and S. cerevisiae, which

have the largest PPI networks among the five organisms, while the

rest can be found in the supplementary data. The protein

interaction data for these organisms have been obtained from

IsoBase [80], a recently developed database of functionally related

protein orthologs. IsoBase consists of the PPI networks of these five

species, along with the homology scores between all pairs of

proteins across different species, measured in terms of BLAST bit-

value similarity of the protein sequences. The PPI networks in the

IsoBase have been constructed by integrating the data in three

different public databases: DIP [45], BioGRID [43], and HPRD

[48]. Table 1 summarizes the statistics of IsoBase, which currently

contains 48,120 proteins and 114,897 protein-protein interactions.

From this table, we can also observe the incompleteness of the

current PPI networks, evidenced by the large number of isolated

proteins (i.e., proteins without known interactions). Furthermore, it

also shows that only a small portion of the included proteins have

known functional annotations according to the KEGG orthology.

In the following, we investigate several important features that can

be observed in these PPI networks.

Intra-network properties of individual PPI

networks. Two important network properties that we can

typically observe in a real PPI network is the scale-free property

and the modularity. The scale-free property manifests itself in the

degree distribution Pd (k), defined as the probability that a given

node in the network will have k connections to other nodes, that

follows a power-law distribution: Pd (k)*k{c for some c. One

measure that can be used to evaluate the modularity of a network

is the clustering coefficient function C(k). We define the clustering

coefficient of a node v of degree k as CC(v)~2e=k(k{1), where e
is the number of connections among the neighbors of v. The

clustering function C(k) is defined as the average clustering

coefficient of all nodes with k neighbors, and it is expected to scale

down with k in a modular network. Figures 1(A)–1(F) and Figures

S1(A)–S1(D) show the degree distribution Pd (k) and the clustering

coefficient function C(k) for the five organisms. These figures

show that the degree distribution of each organism clearly follows

a power-law distribution Pd (k)*k{c, where c ranges between 1.8

and 2.3. We can also see that the clustering coefficient C(k)
quickly scales down with k for all organisms, indicating the

hierarchical modularity present in the PPI networks [71,81].

Cross-network properties between different PPI

networks. In order to devise a practical model for synthesizing

a family of related networks, instead of a single network, it is

important to investigate the cross-network properties that can be

observed when comparing the PPI networks of different organ-

isms. As discussed earlier, two aspects that are important in the

comparative analysis of PPI networks are the structural similarity of

the networks and the molecular similarity between the proteins that

belong to different networks. The molecular similarity between

proteins and their potential orthology is typically assessed based on

their sequence similarity using a sequence alignment algorithm,
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such as BLAST [82] or FASTA [83]. Two questions of practical

interest are: (i) how many potential orthologs would exist in

different networks, for a specific protein in a given network, and (ii)

how the protein similarity scores are distributed when comparing a

network pair.

Distribution of potential orthologs. Let U be the set of

nodes (i.e., protein) in a PPI network G1 and V be the set of nodes

in G2. For a given node u [U in the network G1, how many potential

orthologs exist in the network G2? By potential orthologs, we refer to

pairs of proteins (in different PPI networks) that are candidates for

being true orthologs according to their sequence similarity.

Sequence similarity is often used as practical evidence for

predicting protein orthology, and we assume that nodes with

relatively high sequence similarity are more likely to be

orthologous. Thus, we estimate the number of potential orthologs

of each node u as

N(u)~DfvDv [V,s(u,v)wTsgD,

which is the number of nodes v [V in the network G2 whose

similarity score s(u,v) exceeds some threshold Ts. In practice, we

may use a sequence alignment score, such as the BLAST bit score,

to estimate s(u,v). For any integer l, we define Pc(l) as the fraction

of nodes u [U with N(u)~l. This relative frequency Pc(l) can

provide useful insights regarding the presence of potential

orthologs across different networks. Figures 2(A)–2(F) and Figures

S2(A)–S2(N) show Pc(l) across all pairs of the five organisms in

IsoBase, where a threshold of Ts~45 was used in all experiments.

As shown in these figures, potential orthologs are generally sparse

across networks. The results in Figure 2 and Figure S2 clearly

reveal that the distribution Pc(l) closely follows a power-law

distribution Pc(l)*l{b with an exponent b that ranges between

Table 1. Statistics of the IsoBase database.

Species C. elegans D. melanogaster H. sapiens M. musculus S. cerevisiae

# Proteins 19,756 14,098 22,369 24,855 6,659

# Interactions 5,853 26,726 43,757 452 38109

# Connected proteins 2,745 6,700 8,966 218 4,928

Average Degree 3.19 5.89 8.09 1.56 13.36

# Proteins with KO 2,102 3,366 4,195 3,805 1,605

# Connected proteins
with KO

628 1,912 2,740 71 1,470

# Unique KO’s 1,510 1,979 3,486 3,073 1,212

For each organism, the following numbers are shown: number of proteins in the network, number of interactions, number of connected proteins (those with
interactions), average degree, number of proteins with KO annotations, number of connected proteins with KO annotations, and number of unique KO annotations in
the network.
doi:10.1371/journal.pone.0041474.t001

Figure 1. Network properties of various organisms. (A), (B), and (C) show the degree distributions, and (D), (E), (F) show the clustering
coefficient profiles.
doi:10.1371/journal.pone.0041474.g001
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1.4 and 2.1. For example, let us consider the number of proteins in

the D. melanogaster network that are potentially orthologous to

proteins in the S. cerevisiae network. Among the 6,659 proteins in

the S. cerevisiae network, 3,369 proteins do not have any potential

orthologs in D. melanogaster whose sequence similarity score exceeds

the threshold Ts~45. Among the rest, 1,707 proteins have no

more than two potential orthologs in the D. melanogaster PPI

network, 578 proteins have 2vlƒ5 potential orthologs, 291

proteins have 5vlƒ10 potential orthologs, 246 proteins have

10vlƒ20 potential orthologs, 295 proteins have 20vlƒ50
potential orthologs, 130 proteins have 50vlƒ100 potential

orthologs, and only 43 proteins have more than 100 potential

orthologs. The general trend does not significantly change for

choosing a different threshold Ts. For example, even when we

raise the threshold to Ts~100, the number of proteins in S.

cerevisiae with more than 50 potential orthologs in D. melanogaster

would just decrease to 33. The results are similar for other network

pairs, which show that there are typically only a few nodes in a PPI

network with a relatively large number of potential orthologs,

while most nodes only have a small number of potential orthologs,

if any, in other organisms. This observation reveals an important

challenge in network alignment, namely, strong reliance on

sequence similarity can lead to predictions that are biologically

insignificant and misleading, and effective incorporation of

interaction data is crucial to minimize this risk.

Distribution of sequence similarity scores. Now, let us

consider the distribution of the similarity score between nodes in

different networks. As before, let U be the set of nodes in a PPI

network G1 and let V be the set of nodes in a different PPI network

G2. We define the set of orthologous proteins in the two networks

as

So~f(u,v)Du [U,v [V,u and v are orthologousg,

and the set of non-orthologous proteins as

Sn~f(u,v)Du [U,v [V,u and v are not orthologousg,

where u (in network G1) and v (in G2) are regarded as orthologs if

they belong to the same KEGG ortholog group, thus share the

same functional annotation. We define Po(s) as the distribution of

the similarity score s(u,v) for orthologous nodes (u,v) [So.

Similarly, we define Pn(s) as the score distribution for non-

orthologous node pairs (u,v) [Sn. These distributions are shown in

Figures 2(G)–2(I) and Figures S3(A)–S3(G) across all pairs of the

considered organisms. These results show that the score distribu-

tion can be closely approximated by the Gamma distribution

C(k,h), whose probability density function P(s; k,h) is defined as

follows

P(s; k,h)~sk{1 e{s=h

hkC(k)
fors§0, ð1Þ

for some shape parameter k(w0) and scale parameter h(w0).
These figures also show that there is a substantial overlap between

Po(s) and Pn(s), the similarity score distribution for orthologs and

that for non-orhologs, which again reveals the the importance of

incorporating interaction data into comparative networks analysis.

This observation also confirms the results in previous studies

[28,42,67], which showed that proteins that are conserved at the

sequence level may fail to have conserved functionalities at the

network level.

Proposed Network Synthesis Model
Following the previous discussions, in this section, we propose a

novel network synthesis model that can generate a family of

evolutionarily related protein-protein interaction networks. Sup-

pose we want to generate a family of n synthetic PPI networks

G~fG1, � � � ,Gng. Each network Gk~(Vk,Ek,F k) consists of set

Vk~fvk
1,vk

2, � � � ,vk
Nk
g of Nk nodes; a set Ek~fek

ijg of Mk edges,

where ek
ij denotes the edge between node vk

i and vk
j ; and a set

F k~ff k
1 ,f k

2 , � � � ,f k
Nk
g, which maps each node vk

i to a functional

group f k
i in FO~fF0,F1,F2, � � �g, the set of all functional

orthology (FO) annotations. A node vk
i with f k

i [ fF1,F2, � � �g is

regarded as an annotated protein with a known function f k
i , while

it is regarded as an unannotated protein if f k
i ~F0. We define Si,j

as a Ni|Nj similarity score matrix that contains the sequence

similarity score between all pairs of proteins for the networks Gi

and Gj . The set S~fSi,j D1ƒi,jƒn,i=jg consists of the scoring

matrices for all pairs of networks.

To generate the n networks, we first specify the hypothetic

phylogenetic tree T that describes the evolutionary relationship

among the networks. The tree T , which is assumed to be a binary

tree, will have exactly n leaf nodes, in addition to a number of

internal nodes, which correspond to the n networks to be

generated by the model. The basic idea of the proposed method

is to follow the phylogenetic tree T to create a set of related

networks through repetitive network duplication, mutation, and

network extension, starting from a single hypothetical ancestral

network Ga. In order to create a biologically realistic ancestral

network Ga, we begin by generating a small seed network and

iteratively extend it using one of the network growth models –

DMC, DMR, and CG models – described earlier. As discussed in

[73], choosing the right seed network is crucial to capture the key

topological features of real PPI networks. For the duplication-

based models (i.e., DMC and DMR), we use a seed network that is

similar to the one presented in [73], which was shown to

accurately characterize the attributes of the S. cerevisiae PPI

network. This seed network of size 50 includes two cliques

(complete subgraphs), one with 10 nodes and the other with 7

nodes. Nodes in each of these two cliques are randomly connected

to a few nodes in the other clique. The other 33 nodes are

randomly connected to one of the 17 clique nodes. The nodes in

the first and the second cliques are assigned to distinct functional

groups F1 and F2, respectively. Each of the remaining 33 nodes is

assigned to a different functional group, from F3 to F35. For the

CG model, we use a seed graph of size 4 as in [65]. The initial seed

network is grown into the ancestral network Ga of size Na by

employing one of the network extension models. While growing

the network, every new node is assigned to a new functional group

of its own.

Once the ancestral PPI network Ga is created, we traverse the

phylogenetic tree T to generate descendant networks that are

evolutionarily related to Ga. Figure 3 illustrates an example of a

phylogenetic tree T for five hypothetical species, which corre-

spond to the five leaf nodes B,E,G,I , and H . The tree also

includes three internal nodes c, d and f , and the root node a.

Since the phylogenetic tree is assumed to be binary, each internal

node (including the root node) branches off to two child nodes. For

each child node, we create a network by duplicating the parent

network and evolving it into a larger network. For example,

according to the tree in Figure 3, we generate two networks GB (for

the leaf node B) and Gc (for the internal node c) based on the

ancestral network Ga that corresponds to the root node a, which is

the parent of B and c. We will traverse the tree T through a

breadth-first search [84] and repeat this bifurcation process until
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all n networks are generated. It is straightforward to see that this

will require n{1 bifurcations, in total.

The bifurcation step is carried out as follows. Suppose

Gp~(Vp,Ep,F p) is the network that corresponds to the current

internal node. We denote Sp as the set of scoring matrices that

contain the similarity scores between proteins in Gp and those in

the networks for other nodes in T that have been previously

visited. We generate the networks G1 and G2 for the two child

nodes by duplicating the parent network: G1~G and G2~G. Both

networks inherit the functional annotations of their parent Gp and

the set Sp of scoring matrices. For every pair of nodes u in G1 and v

in G2, we randomly assign their similarity score according to a

Gamma distribution as follows:

s(u,v)*
XozTs, if fv~fu,

XnzTs, if fv=fu:

�
ð2Þ

where Xo and Xn are random numbers sampled according to

Xo*C(ko,ho) and Xn*C(kn,hn). Note that the similarity score

s(u,v) takes a different distribution, depending on whether or not u
and v have the same functional annotation: ko and ho are the

shape and scale parameters of the Gamma distribution for

Figure 2. Cross-species network properties for different pairs of organisms. (A)–(F) show how the number of potential orthologs (i.e.,
nodes with high sequence similarity) are distributed between a given pair of networks. Pc(l) is the fraction of nodes with l potential orthologs in the
other network. (G)–(I) illustrate the sequence similarity (BLAST bit score) distribution for orthologous and non-orthologous node pairs.
doi:10.1371/journal.pone.0041474.g002

Figure 3. The phylogenetic tree of five hypothetical organisms.
doi:10.1371/journal.pone.0041474.g003
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orthologs (with identical FO annotations); ko and ho are the

parameters for non-orthologs (with different FO annotations). Ts is

used to simulate the thresholding effect of sequence similarity

scores. As we have seen in our analysis of real PPI networks,

potential orthologs across different networks are generally sparse.

In the proposed model, we enforce the number of potential

orthologs to follow a power-law distribution Pc(l)*lb, as in real

PPI networks.

To diverge the child networks G1 and G2 from the parent

network Gp, we independently apply a network growth algorithm

(DMC, DMR, or CG) to each of these networks. In this step, the

number of new nodes added to each child network may be

specified according to the evolutionary distance between the

corresponding hypothetical species in the tree T . For instance, in

Figure 3, the number of additional nodes (referred as the ‘‘length’’

of a given branch) are shown along the branches. In this example,

if the ancestral network has Na nodes, the PPI network GB for

node B will have NB~Nazb1 nodes and the PPI network GE for

node E will have NE~Nazb’1zb2 nodes. Consider a new node

v’ that was either (i) obtained by duplicating an existing node v
(when using either the DMC or the DMR model) or (ii) a new

node whose anchor node was chosen to be v (when using the CG

model). We transfer the functional annotation and the similarity

scores from an existing node v to a new node v’ as follows:

1. With probability pfo, assign v’ to the same functional group as v
by setting fv’~fv. With probability 1{pfo, set fv’~F0, which

implies that v’ takes a new unknown function.

2. For every protein u in the networks that correspond to

previously visited nodes in T , assign the similarity score

between u and v’ as:

s(u,v’)~(1{l)s(u,v), ð3Þ

where l is a random scaling factor with a uniform distribution

over ½0,l max�. The upper bound l max (ƒ1) specifies the

extent of the sequence-level divergence between u and v’.

In this way, we can model the functional inheritance and the

sequence similarity between the duplicated nodes, where a

duplicated node may have a different function from the original

node. Finally, when using the CG model, a new node v’ that forms

a new functional module by itself, hence not anchored to any of

the existing nodes, will be assigned a new unannotated function

(i.e., fv’~F0).

Results and Discussion

Attributes of Synthetic Networks
To validate the proposed network synthesis model, we

generated synthetic PPI networks according to the model and

analyzed the individual and cross-species characteristics of the

synthesized networks. We first generated an ancestral network Ga

of size Na~4000. A simple binary tree with two leaves was used to

evolve Ga into two networks G1 and G2, respectively with 5,000

nodes and 7,000 nodes. For network extension, we applied all

three network growth models – DMC, DMR, and CG – discussed

in this paper. For DMC, we used qmod~0:6 and qcon~0:1 as in

[65]. For DMR, we set the parameters to qdel~0:635 and

qnew~0:12 as in [73]. We used d~4 for CG as in [65]. The

scaling and shape parameters of the Gamma distributions in (2)

were set to ko~0:72, ho~226, kn~0:85, hn~73, and the

exponent b in the distribution Pc(l) was set to b~1:6, such that

the cross-network properties between G1 and G2 resemble those

between the D. melanogaster PPI network and the S. cerevisiae PPI

network. The parameters pfo and l max that control the

functional inheritance and sequence similarity between ortholo-

gous nodes were set to pfo~0:9 and l max~0:1, so that protein

function and sequence similarity is conserved at the 90% level.

Although it is practically difficult to accurately determine these two

parameters in real networks, the analysis in [85] shows this rate of

functional conservation for duplicated genes.

In the case of CG algorithm, we made a slight modification in

the first step of the algorithm as follows. In the original algorithm

proposed in [65], when adding a new node, the modules of the

current network are recomputed at each iteration. To speed up the

CG algorithm, we instead redefine the modules every N=10 steps,

where N is the size of the current network. In other words, in the

early iterations, we redefine modules in every iteration, while as

the network grows larger, we apply the module redefinition step

only occasionally and use these modules over multiple iterations.

Simulation results show that the CG method can still accurately

capture the generic features of real PPI networks with this

modification. We leave the module redefinition frequency as a

control parameter that can be freely adjusted.

The properties of the synthetic PPI network are shown in

Figure 4, Figure 5, and Figure 6, for using DMC, DMR, and CG,

respectively. As can be seen in these figures, all three schemes can

accurately model the scale-free degree distribution. However, it

appears that the hierarchical modularity can be better captured by

using either DMC or CG, rather than DMR. Regarding the cross-

network properties, these results also clearly show that the

proposed network synthesis model can effectively capture the

attributes of real PPI networks. For example, this can be

immediately seen by comparing the network properties of G1

and G2 in Figures 4(E) and 4(F) (when using DMC) with those of

the D. melanogaster and the S. cerevisiae PPI networks shown in

Figures 2(B) and 2(H). Similar observations can be made from

Figures 5(E) and 5(F) (for DMR) as well as Figures 6(E) and 6(F)

(for CG).

Construction of Network Alignment Benchmark
The network synthesis model presented in this paper provides

an effective framework for generating network families with

diverse characteristics. Such network sets may be used to assess the

performance of various alignment techniques to identify their

respective strengths and weaknesses under different conditions and

problems settings. Furthermore, the proposed network synthesis

model may be potentially used to expose previously unknown

biases that a network alignment technique may have towards

specific types of networks, thereby leading to better alignment

techniques.

To demonstrate the utility of the proposed network generation

scheme, we used it to create synthetic benchmark datasets that can

be used for evaluating and comparing the performance of various

network alignment algorithms. We call the proposed Network

Alignment Performance Assessment benchmark as NAPAbench.

In total, we generated three suites of datasets. The first suite

(referred as the pairwise alignment dataset) contains three pairs of

networks, where the respective network pairs were generated using

DMC, DMR, and CG, respectively. Each pair consists of a

network G1 with N1~3,000 nodes and another network G2 with

N2~4,000 nodes, both evolved from an ancestral network Ga with

Na~2,000 nodes, following a binary tree with two leaves. The

second suite (referred as the 5-way alignment dataset) contains three

network families, each with five networks generated using DMC,

DMR, or CG. To generate the network family, we first created an

ancestral network Ga with Na~500 nodes. The phylogenetic tree
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T in Figure 3 was used to evolve Ga into five networks – GB, GE ,

GG , GH , and GI – which correspond to the five leaf nodes. For

every branch, we set its length to 500. Thus, the size of the five

networks were NB~1,000, NE~1,500, NG~2,000,

NH~NI~2,500. This dataset simulates a family of PPI networks

that correspond to distantly related species. Finally, the third suite

(referred as the 8-way alignment dataset) also consists of three

network families, each with eight networks generated by one of the

three network extension models. The eight networks were

obtained by evolving an ancestral network Ga of size Na~400

Figure 4. Properties of the networks generated using the DMC model. (A)–(B) Degree distribution. (C)–(D) Clustering coefficient profile. (E)
Distribution of the number of potential orthologs. (F) Sequence similarity distribution for orthologous nodes and the distribution for non-orthologous
nodes. (Na~4000, N1~5000, N2~7000, qmod~0:6, and qcon~0:1).
doi:10.1371/journal.pone.0041474.g004

Figure 5. Properties of the networks generated using the DMR model. (A)–(B) Degree distribution. (C)–(D) Clustering coefficient profile. (E)
Distribution of the number of potential orthologs. (F) Sequence similarity distribution for orthologous nodes and the distribution for non-orthologous
nodes. (Na~4000, N1~5000, N2~7000, qdel~0:365, and qnew~0:12).
doi:10.1371/journal.pone.0041474.g005
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according to a full binary tree with eight leaf nodes. The branch

length was set to 200 for all branches, which gave rise to eight

equally sized networks, each with 1,000 nodes. This 8-way

alignment dataset tries to simulate a network family of closely-

related species. All the datasets in NAPAbench are publicly

available at http://www.ece.tamu.edu/bjyoon/NAPAbench/.

Performance Analysis of Network Alignment Algorithms
The created benchmark datasets, NAPAbench, can be used for

reliable and comprehensive performance evaluation of existing

network alignments. In this work, we used this synthetic

benchmark to assess the performance of five well-known multiple

network alignment algorithms: IsoRank [13], IsoRankN [12],

NetworkBLAST-M [15], Græ mlin 2.0 [11], and MI-GRAAL

[25]. IsoRank [13] uses spectral graph theory to evaluate the overall

similarity between nodes that belong to different networks. This

pairwise alignment score is computed for every node pair across all

pairs of networks, which is then used to build the multiple network

alignment according to a greedy approach. IsoRankN [12] further

extends the idea in IsoRank by employing a spectral clustering

scheme based on the pairwise node alignment scores. Network-

BLAST-M [15] computes the network alignment by first

constructing a layered alignment graph based on the potential

orthologous nodes, and then greedily searching for highly

conserved local regions in the alignment graph. Græ mlin 2.0 [11]

takes a progressive approach to construct a global alignment of

multiple networks, where it repeatedly performs pairwise network

alignments according to a given phylogenetic tree that describes

the relationship among the networks. The alignment is predicted

by maximizing an objective function based on parameters that are

learned from a set of known alignments. Finally, MI-GRAAL [25] is

a recently proposed pairwise network alignment scheme that can

Figure 6. Properties of the networks generated using the CG model. (A)–(B) Degree distribution. (C)–(D) Clustering coefficient profile. (E)
Distribution of the number of potential orthologs. (F) Sequence similarity distribution for orthologous nodes and the distribution for non-orthologous
nodes. (Na~4000, N1~5000, N2~7000, and d~4).
doi:10.1371/journal.pone.0041474.g006

Table 2. Performance of different alignment algorithms on the pairwise alignment dataset of NAPAbench.

DMC DMR CG

SPE CN MNE SPE CN MNE SPE CN MNE

IsoRank 77.53 3883 24.29 77.77 3914 23.92 77.22 3986 24.47

IsoRankN 82.69 3836 14.13 83.55 3915 13.40 83.16 3868 13.34

NetworkBLAST-M 96.34 3354 5.33 96.60 3005 4.28 95.86 4646 4.44

Græ mlin 77.37 2137 15.70 81.03 2322 13.33 90.72 2549 7.96

MI-GRAAL 66.13 3612 35.27 69.97 3852 31.59 79.48 4385 22.76

Performance comparison based on the pairwise alignment of two networks of size 3,000 and 4,000. The performance of each method is assessed using the following
metrics: specificity(SP), number of correct nodes (CN), and mean normalized entropy (MNE). In each column, best performance is shown in bold.
doi:10.1371/journal.pone.0041474.t002
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integrate any number and type of similarity measures between

network nodes, such as sequence similarity, structural similarity,

and topological similarity.

Recall that the node similarity score in the proposed model tries

to mimic the BLAST bit scores. Since NetworkBLAST-M and

MI-GRAAL employ the BLAST E-values, instead of the BLAST

bit scores, we should transform the bit scores into the

corresponding E-values for these two algorithms. As discussed in

[86,87], the simulated bit score (S) is related to the E-value (E) as

E~m’n’2{S , where m’ is the length of the BLAST query and n’ is

the length of the target sequence. Here, we transform our

simulated bit scores to E-values using E~1011|2{S (assuming,

for instance, the case when we BLAST a protein sequence with

500 residues in a database that contains a total of 200,000,000

residues). In this paper, we used the restricted-order version of

NetworkBLAST-M as the running time of the relaxed-order

version increases exponentially with respect to the number of

networks to be aligned. As Græ mlin needs to learn the parameters

of its scoring function in advance, we generated a training set that

consists of five networks (with N1~1,500, N2~2,000, N3~2,500,

N4~3,000, and N5~3,000 nodes, respectively), using the

proposed scheme with the DMC model by following the tree

shown in Figure 3. MI-GRAAL can integrate different kinds of

similarity measures into the search process. Here, we adopt the

graphlet degree signature distance and the E-values (measuring the

sequence similarity) for MI-GRAAL alignment algorithm. For

IsoRank and IsoRankN, the parameter a, which determines the

balance between sequence similarity and topological similarity,

was set to 0.6.

The accuracy of each network alignment algorithm was assessed

using four measures – specificity, correct nodes, mean normalized

entropy, and coverage – which had been previously used in [11]

and [12]. We refer the set of aligned nodes (i.e., potential

orthologs) as the equivalence class. Each equivalence class may

include an arbitrary number of nodes from each species. To

compute the accuracy measures, we first removed the unannotated

nodes from the alignment (i.e, nodes with the annotation F0) and

then removed equivalence classes containing only a single node. A

given equivalence class is viewed as being correct if all the included

nodes belong to the same FO group. The four measures are

defined as follows:

N Specificity (SPE): The relative number of correctly predict-

ed equivalence classes.

N Correct Nodes (CN): The total number of nodes (i.e.,

proteins) that are assigned to the correct equivalence class.

This measure reflects the sensitivity of the prediction [11].

N Mean normalized entropy (MNE): The mean normalized

entropy of the predicted equivalence classes can provide an

effective measure of the consistency of the predicted network

alignment. The normalized entropy of a given equivalence

class C is computed as:

H(C)~{
1

log d

Xd

i~1

pi log pi, ð4Þ

where pi is the fraction of proteins in C with the FO

annotation Fi, and d is the number of different FO groups.

Table 3. Performance Comparison on the 5-way network alignment dataset of NAPAbench.

DMC DMR CG

SPE CN MNE SPE CN MNE SPE CN MNE

IsoRankN 80.91 5538 10.27 79.58 5496 11.14 82.68 5689 9.72

NetworkBLAST-M 62.18 1774 12.72 67.66 1591 10.62 69.90 3225 9.31

Græ mlin 51.07 3028 16.32 50.88 3100 16.94 62.89 4451 13.19

IsoRankN (only 5-species) 69.67 1859 9.67 68.07 1610 10.26 73.83 2223 7.99

Græ mlin (only 5-species) 35.90 1575 19.50 36.60 1581 20.29 54.44 2394 14.17

Performance comparison based on the 5-way alignment of five networks of size 1500, 2000, 2500, 3000 and 3000. The last two rows are obtained by considering only
equivalence classes that contain at least one node from every species. The performance of each method is assessed using the following metrics: specificity(SP), number
of correct nodes (CN), and mean normalized entropy (MNE). In each metrics, best performance is shown in bold.
doi:10.1371/journal.pone.0041474.t003

Table 4. Performance Comparison on 8-way network alignment dataset of NAPAbench.

DMC DMR CG

SPE CN MNE SPE CN MNE SPE CN MNE

IsoRankN 64.50 4069 13.62 62.52 3938 14.58 61.18 3890 14.58

NetworkBLAST-M 54.06 1166 13.97 63.72 1203 10.65 63.66 2236 10.84

Græ mlin 58.67 2315 16.51 51.34 1939 19.38 49.29 2729 17.24

IsoRankN (only 8-species) 56.74 1987 10.06 54.36 1797 10.81 54.30 2172 10.33

Græ mlin (only 8-species) 13.08 345 29.83 9.87 291 31.63 25.66 802 20.78

Performance comparison based on the 8-way alignment of eight networks of equal size 1,000. The last two rows are obtained by considering only equivalence classes
that contain at least one node from every species. The performance of each method is assessed using the following metrics: specificity(SP), number of correct nodes
(CN), and mean normalized entropy (MNE). In each column, best performance is shown in bold.
doi:10.1371/journal.pone.0041474.t004
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Thus, a cluster that consists of nodes with higher functional

consistency will have lower entropy.

N Coverage: For any integer k, the total number of equivalence

classes that contain nodes from k species. We report this

measure only for multiple network alignment experiments (and

not for pairwise alignments).

NetworkBLAST-M reports only the local alignment of the input

networks, while the other four algorithms yield the global

alignment of the given networks. For a fair comparison between

these algorithms, we first convert the local alignment predicted by

NetworkBLAST-M into a global network alignment by merging

all local node correspondences. For example, if nodes a and b are

aligned in one local alignment while a and c are aligned in another

local alignment, we assume that a, b, and c belong to the same

equivalence class.

The SPE, CN, and MNE of the five algorithms are summarized

in Table 2, Table 3, and Table 4, for the pairwise alignment

dataset, 5-way alignment dataset, and the 8-way alignment

dataset, respectively. Figure 7 and Figure 8 shows the coverage

of different algorithms for the 5-way and 8-way dataset,

respectively.

For pairwise network alignments, NetworkBLAST-M boasts

significantly higher specificity and consistency (reflected in lower

MNE) compared to other algorithms. IsoRank, IsoRankN, and

MI-GRAAL yielded the highest number of correctly aligned nodes

(i.e., CN) for networks generated using the DMC/DMR growth

models, implying high sensitivity. For the networks created using

the CG model, which yield highly modular networks, Network-

BLAST-M showed highest sensitivity, closely followed by MI-

GRAAL.

For the 5-way and 8-way alignment experiments, we can clearly

observe the degradation in sensitivity of NetworkBLAST-M, as

shown in Table 3 and Table 4. This may be due to the fact that

NetworkBLAST-M aims to predict equivalence classes that are

conserved across all the compared species, as illustrated in Figure 7

and Figure 8. In these experiments, Græ mlin showed moderate

performance, where the sensitivity was higher than Network-

BLAST-M, but the specificity and the consistency were lower. The

multiple network alignment experiments based on the 5-way and

the 8-way benchmark datasets in NAPAbench show that

IsoRankN can yield the most accurate network alignment results,

in terms of specificity, sensitivity, and consistency. This observa-

Figure 8. Number of equivalence classes in the 8-way alignment experiment that contain nodes from k species (1ƒkƒ8).
doi:10.1371/journal.pone.0041474.g008

Figure 7. Number of equivalence classes in the 5-way alignment experiment that contain nodes from k species (1ƒkƒ5).
doi:10.1371/journal.pone.0041474.g007
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tion is in agreement with the performance assessment in [12],

based on five real biological networks.

To compared the performance of different algorithms in

predicting equivalence classes conserved across all networks, we

also estimated the accuracy of IsoRankN and Græ mlin only for

such classes. These results are shown in the last two rows of Table 3

and Table 4. We can see that IsoRankN still outperforms

NetworkBLAST-M in most cases for 5-way alignment. In the 8-

way network alignment, IsoRankN appears to outperform

NetworkBLAST-M for networks generated using the DMC

growth model. However, NetworkBLAST-M is more sensitive

on networks obtained using the DMR model, and it is also more

sensitive and more specific for networks generated using the CG

model. These results also show that Græ mlin is outperformed by

the other two algorithms in this case, which implies that it may not

be effective in predicting orthologous nodes that are conserved

across all species.

Figure 7 shows the number of equivalence classes (i.e., the

coverage) that are predicted in the 5-way alignment dataset by the

respective algorithms. In each case, the total number of

equivalence classes is split into the number of classes that consist

of nodes from k different networks (1ƒkƒ5). As shown in this

figure, all three algorithms predicted similar number of equiva-

lence classes that contain nodes from all k~5 networks. However,

we can see that IsoRankN predicts a significantly larger number of

equivalence classes with k§3 compared to the other algorithms.

Considering that the 5-way alignment dataset consists of networks

with varying size, equivalence classes that contain nodes from

kv5 networks are fairly common, hence the ability of identifying

such equivalence classes is certainly an important advantage of

IsoRankN. Figure 8 shows coverage of different algorithms on the

8-way dataset. The trends are similar as in the 5-way alignment,

and we can see that IsoRankN results in greater coverage for

equivalence classes spanning k§3 networks. Another interesting

observation is that Græ mlin predicts a large number of

equivalence classes that contain only nodes from k~2 networks.

Next, we investigate the effect of sequence similarity on the

performance of the various network alignment algorithms. To this

aim, we add a bias term b to the similarity score distribution of

potential orthologs in (2), such that the score is randomly sampled

as s(u,v)~XozTszb, where Xo*C(ko,ho). Increasing the bias b

will further separate the similarity score distributions of ortholo-

gous and non-orthologous nodes. As a result, the larger b is, the

easier it becomes to align the networks (and to predict the potential

orthologs across networks) based on sequence similarity alone,

without utilizing the topological similarity between networks. For

this experiment, we generated two networks with 1,000 nodes

from an ancestral network of size Na~500. Figure 9 shows how

specificity (SPE) and CN (which reflects sensitivity), change for

varying values of b between 0 and 250. As can be seen in this

Figure 9. The specificity (SPE) and the CN (which reflects the sensitivity) of different alignment algorithms for varying level of
separation between the similarity score distribution for orthologs and the score distribution for non-orthologs. Increasing the bias b
increases the separation between the two score distributions, hence increase the discriminative power of the node similarity score for predicting
potential orthologs.
doi:10.1371/journal.pone.0041474.g009

Table 5. Total CPU time (min) for aligning the networks.

DMC DMR CG

pairwise 5-way 8-way pairwise 5-way 8-way pairwise 5-way 8-way

IsoRank 2.5 N/A N/A 2.5 N/A N/A 5 N/A N/A

IsoRankN 25 65 60 20 65 57 56 170 150

NetworkBLAST-M 0.5 10 6 0.5 10 6 0.5 10 6

Græmlin 0.3 5.5 7 0.2 3.5 7.5 0.5 5 10

MI-GRAAL 45 N/A N/A 45 N/A N/A 45 N/A N/A

doi:10.1371/journal.pone.0041474.t005
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figure, as the separation between the score distributions of

orthologs and non-orthologs increases, both the specificity and

the sensitivity are improved for IsoRank, IsoRankN, and Græ

mlin. On the other hand, NetworkBLAST-M and MI-GRAAL

display a constant level of accuracy that does not depend on the

amount of separation. This implies that the first three alignment

algorithms rely on the similarity between nodes relatively strongly

when predicting the network alignment, while NetworkBLAST-M

and MI-GRAAL use the similarity score mainly to predict

potential orthology and do not rely too much on the extent of

the similarity. In these experiments, Græ mlin appears to most

strongly rely on the node similarity among the compared

algorithms. In fact, Græ mlin achieves the highest specificity and

sensitivity when there is a large separation between the score

distributions (e.g., b~250), while resulting in the lowest sensitivity

when the separation is small (e.g., b~0).

Table 5 compares the computational complexity of the five

algorithms, in terms of the total CPU time needed to align the

networks in the respective datasets. All experiments have been

performed on a desktop computer with a 2.2GHz Intel Core2Duo

CPU and 4GB memory. It should be noted that Græ mlin requires

a training stage for estimating the parameters used by the

algorithm, which took more than a day in our experiments. The

CPU time shown in Table 5 reveals that Græ mlin (without

considering the training stage) and NetworkBLAST-M are the

fastest among the five algorithms, while IsoRankN and MI-

GRAAL are computationally more complex than these two

algorithms.

Discussion
Absence of a comprehensive and reliable network alignment

benchmark has been a critical obstacle that has been hindering

research progress in comparative network analysis. In this work,

we addressed this problem by proposing a novel network synthesis

model that can generate network families with biologically realistic

properties. The proposed model allows us to effectively generate

families of evolutionarily related networks, where the network

family may contain any number of networks with arbitrary

phylogenetic relationships. We demonstrated that the internal as

well as the cross-network properties of the synthesized networks

closely resemble those of real protein-protein networks. Based on

the proposed model, we synthesized a number of network

benchmark datasets and evaluated the performance of several

representative network alignment algorithms. These experiments

allow us to clearly delineate the advantages and disadvantages of

the respective algorithms in contrast to other algorithms. As

demonstrated throughout this paper, the proposed network

synthesis model provides an effective framework for generating

large-scale network benchmarks, which can be used to reliably

assess the performance of current and future network alignment

algorithms under various conditions and problem settings.

Supporting Information

Figure S1 Network properties of different organisms.
(A), (B) show the degree distributions, and (C), (D) show the

clustering coefficient profiles.

(EPS)

Figure S2 Cross-species network properties for differ-
ent pairs of organisms. (A)–(N) show how the number of

potential orthologs are distributed between a given pair of

networks.

(EPS)

Figure S3 Cross-species network properties for differ-
ent pairs of organisms. (A)–(G) illustrate the sequence

similarity distribution for orthologous and non-orthologous node

pairs.

(EPS)
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